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Abstract
Dataflow architectures are growing in popularity due to

their potential to mitigate the challenges posed by the memory
wall inherent to the Von Neumann architecture. At the same
time, High-level synthesis (HLS) has demonstrated its effi-
cacy as a design methodology for generating efficient dataflow
architectures within a short development cycle. However, exist-
ing HLS tools rely on developers to explore the vast dataflow
design space or are structured in a manner that ultimately
leads to suboptimal designs. This phenomenon is especially
concerning as the number of HLS designs grows. To tackle
these challenges, we introduce ScaleFlow, a new scalable and
hierarchical HLS framework that can systematically convert
an algorithmic description into a dataflow hardware imple-
mentation. We propose a collection of efficient and versa-
tile dataflow representations for modeling the hierarchical
dataflow structure within ScaleFlow. Capitalizing on these
representations, we develop an automated optimizer that de-
composes the dataflow optimization problem into multiple
levels based on the inherent dataflow hierarchy, achieving
scalable task partitioning, dataflow scheduling, and paral-
lelization. Based on FPGA evaluations using a set of neural
networks, ScaleFlow achieves up to 8.54× higher through-
put compared to the state-of-the-art (SOTA) HLS optimization
tool. Furthermore, despite being fully automated to handle
different models, remarkably, ScaleFlow can achieve 1.29×
higher throughput over the SOTA RTL-based neural network
accelerators on an FPGA.

1. Introduction
With the decline of Moore’s law, the industry and the research
community are being forced to rethink how we can extract
that extra bit of performance even when technology scaling
is stopping. In this context, customized and domain-specific
accelerators are becoming well accepted in combating the
physical limitations of silicon, including those implemented
on ASICs [8, 20, 11] and reconfigurable platforms, such as
FPGAs [45, 51, 42].

Dataflow Architecture. An important computation ar-
chitecture for customized hardware accelerators is dataflow,
which enables the parallel temporal execution of multiple pro-
cessors or coarse-grained tasks [27, 31, 47]. Unlike the Von
Neumann-based architecture that constantly grapples with the
memory wall, dataflow architecture can exploit the streaming
or tile buffering between adjacent tasks to avoid frequent ex-
ternal memory access. As long as an application is dataflow
feasible, a well-designed dataflow architecture can efficiently

execute the application with reduced power and bandwidth
utilization [37, 46, 38, 10].

High-level Synthesis. Historically, the cost of developing
customized hardware accelerators has always remained astro-
nomically high. In this context, high-level synthesis (HLS)
is a promising solution that can synthesize high-level algo-
rithmic description to an equivalent RTL implementation [5].
The higher level of abstraction allows the designer to exper-
iment with various design choices easily, shortening the de-
sign space exploration (DSE) phase and avoiding subopti-
mal design points [33, 22]. Furthermore, given that HLS
can enable rapid evaluation of different design points, many
HLS-augmentation tools have further improved the quality of
HLS-generated accelerators [34, 4].

Existing Dataflow Approaches. To implement dataflow
architectures using commercial HLS tools, users must use
high-level programming interfaces such as AMD Vitis HLS
dataflow compiler directive [17], Intel HLS system of
tasks [18], and LegUp thread APIs [19]. However, it is dif-
ficult for users to implement a dataflow-oriented HLS design
with sequential languages, such as C/C++. Therefore, aca-
demic HLS tools have pushed for approaches that define the
hierarchical dataflow structure through decoupled hardware
customization primitives [2, 24, 39, 16] or by using specialized
primitives [26, 23, 3, 12]. These approaches have effectively
improved productivity and quality compared to industrial HLS
tools. Note that there also exist recent frameworks [40, 9] that
can automatically generate dataflow design without manual
code rewriting. However, these automated frameworks cannot
model dataflow architectures systematically, limiting them to
the generation of simple designs with suboptimal quality.

Unexplored Opportunities. Although existing HLS tools
can enable dataflow designs, they still heavily rely on the user
to make the hard design decisions, including parallelization
strategy, tiling strategy, memory hierarchy, data layout, etc.
More importantly, the design spaces of different tasks in the
dataflow are tightly coupled with one another due to two rea-
sons: (1) an efficient dataflow architecture demands balanced
latency across different tasks because the critical task deter-
mines the overall achievable performance; (2) the inter-task
communications are often established through streaming chan-
nels or on-chip buffers instead of hierarchical shared memory.
Meanwhile, large-scale dataflow often gravitates towards a hi-
erarchical structure, as dataflow tasks are naturally represented
by nested graphs, further complicating the design space.

As a result, the vast design space can prohibit programmers
from reasoning about various design choices and finding the
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Figure 1: ScaleFlow framework overview.

Table 1: ScaleFlow-IR key operations. Region is a sequential
list of operations to be executed.

Operation Description

Functional Dataflow

task Own a transparent region, can contain nested
dispatch operation with sub-tasks.

dispatch Launch multiple tasks in its region.

Structural Dataflow

node Own an isolated region, can contain nested
schedule operation with sub-nodes. Carry ex-
plicit I/O memory effect information.

schedule An isolated region with multiple nodes. Carry
explicit scheduling information.

buffer A buffer with variadic stages and ports and au-
tomatic ping-pong buffering semantics. Carry
explicit partition and layout information.

stream A stream channel with variadic entries.

Module Interface

port A memory or stream port with explicit type.
bundle A named bundle of ports.
pack Pack an external memory block into a port.

optimized design point. This can eventually lead to non-ideal
performance and efficiency, thereby thwarting the promise of
existing dataflow approaches. We observed that many HLS-
augmentation tools have proposed DSE engines using different
algorithms, including polyhedral techniques [52, 53, 1, 49],
graph analysis [50, 48, 15, 41], and machine learning [36, 43,
9, 21]. These tools can effectively explore the local design
space of a single task or kernel. However, they cannot handle
the dataflow-oriented exploration of multiple tasks due to the
inter-task coupling and the complicated dataflow hierarchy.

ScaleFlow Approach. With the discussion above, we con-
cluded that the challenges presented in the design and opti-
mization of dataflow architecture cannot be fully addressed by
existing HLS approaches, which rely on programmers to ex-
plore the vast design space manually. We argue that compilers
will and should play an important role in the design process -
the hierarchical characteristics of dataflow architecture should
be systematically represented and modeled, on which an op-
timization pipeline should be built to handle the inter- and
intra-task optimizations comprehensively.

Under this mantra, we propose ScaleFlow, an HLS frame-
work with scalable dataflow intermediate representations (IR)
and optimizations, enabling the automated transformation of
algorithmic hardware descriptions to efficient dataflow archi-
tectures. The main contributions of ScaleFlow are as follows:
• We propose a new dataflow IR called ScaleFlow-IR, which

models dataflow at two different levels of abstraction, Func-
tional and Structural, to capture the dataflow characteristics
and multi-level hierarchy, enabling effective optimizations.

• We propose a new dataflow optimizer called ScaleFlow-

OPT, featuring a pattern-driven task partition algorithm and
an intensity- and connection-aware dataflow parallelization
algorithm geared toward maximum efficiency.

• We enable an end-to-end and extensible compilation stack
supporting PyTorch and C++ inputs, empowering the user
to rapidly experiment with various design parameters and
prototype new dataflow architectures.

• We perform comprehensive FPGA evaluations of ScaleFlow.
On a set of neural networks, ScaleFlow achieves 8.54× and
1.29× higher throughputs over the SOTA HLS optimization
framework and RTL-based neural network accelerator.

2. ScaleFlow Framework

Figure 1 shows the overall architecture of the ScaleFlow
framework. ScaleFlow is built on top of MLIR [25, 6] and
can take deep learning models written in PyTorch [29] or
generic HLS C++ code as design entries and produce op-
timized HLS C++ code. For the PyTorch and C++ inputs,
we use Torch-MLIR [7] and Polygeist [28] as front-ends to
parse source codes into ScaleFlow, respectively. After the
optimizations are completed in ScaleFlow, we use an HLS
C++ emitter [40] to generate synthesizable HLS C++ code,
which can then be mapped to RTL designs with downstream
HLS tools [17, 18, 19]. Inside ScaleFlow, we propose two
new techniques to handle the representation and optimization
of dataflow compilation, which are the key enablers to tackle
the challenges discussed in Section 1:
• Hierarchical Dataflow IR (ScaleFlow-IR). As shown in Fig-

ure 1, ScaleFlow consists of two levels of dataflow abstrac-
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Table 2: Evaluation results of ScaleFlow for C++ kernels. The ScaleHLS designs are automatically generated by [40]. The Vitis designs are
solely optimized by Vitis HLS.

Kernel Compile
Time (s)

LUT
Number

FF
Number

DSP
Number

Throughput (Samples/s) Improvements

ScaleFlow ScaleFlow v.s. ScaleHLS ScaleFlow v.s. Vitis

2mm 0.65 38.8k 27.4k 269 239.22 122.39 (1.95×) 1.23 (194.88×)
3mm 0.79 38.7k 27.8k 243 175.43 92.33 (1.90×) 1.04 (167.99×)
atax 2.06 44.6k 34.6k 260 1,021.39 932.26 (1.10×) 103.18 (9.90×)
bicg 0.72 16.0k 15.1k 61 2,869.69 2,869.61 (1.00×) 104.19 (27.54×)

correlation 0.91 14.5k 12.3k 66 67.33 59.77 (1.13×) 1.32 (50.97×)
gesummv 0.60 34.2k 22.8k 232 31,685.68 31,685.68 (1.00×) 266.65 (118.83×)
jacobi-2d 1.98 91.4k 56.6k 352 257.27 128.63 (2.00×) 2.71 (94.95×)

mvt 0.42 23.8k 16.5k 162 9,979.04 4,989.02 (2.00×) 62.13 (160.62×)
seidel-2d 3.59 5.5k 2.5k 4 0.14 0.14 (1.00×) 0.11 (1.28×)

symm 1.05 14.9k 9.5k 74 2.62 2.62 (1.00×) 2.02 (1.29×)
syr2k 0.69 14.3k 12.8k 78 27.68 27.67 (1.00×) 1.44 (19.23×)

Geo. Mean 0.99 1.29× 31.08×

tion carved for different purposes. Table 1 summarizes the
key operations of ScaleFlow-IR. The Functional dataflow is
designed to capture the high-level characteristics and hierar-
chy of HLS designs, driving the algorithmic optimizations
and task partitioning. In contrast, the Structural dataflow is
a low-level abstraction that captures the micro-architectural
details and is optimized to handle the scheduling, paralleliza-
tion, and code generation.

• Hierarchical Dataflow Optimizer (ScaleFlow-OPT). Scale-
Flow decouples the optimization problems of Functional
and Structural dataflow to handle HLS designs at scale. At
the Functional level, ScaleFlow-OPT is focused on effec-
tive task partitioning toward workload balancing and low
communication cost. At the Structural level, ScaleFlow-
OPT can optimize the dataflow scheduling through multi-
producer elimination and data path balancing. Meanwhile,
an intensity- and connection-aware algorithm is introduced
to improve the dataflow parallelism while minimizing the
resource utilization.

3. Evaluation

To evaluate ScaleFlow, we use FPGAs as target platforms and
perform two sets of experiments using C++ and PyTorch inputs
and an ablation study on a ResNet-18 model. As depicted in
Figure 1, AMD Vitis HLS 2022.1 [17] is used for generating
RTL code. All reported performances and resource utilization
are collected from the synthesis results of Vitis HLS.

3.1. C++ Kernels Evaluation

Experiment Settings. We evaluate ScaleFlow with a set of
C++ benchmarks from PolyBench [30]. The benchmarks
cover multiple categories, including blas routines (gesummv,
symm, and syr2k), linear algebra kernels (2mm, 3mm, atax,
bicg, and mvt), data mining (correlation), and stencils (jacobi-
2d and seidel-2d). The targeted platform is AMD-Xilinx
ZU3EG FPGA. Table 2 shows the evaluation results. Com-

pared with Vitis HLS, although Vitis HLS can automatically
apply optimizations such as loop pipeline to a certain de-
gree, it cannot conduct complex dataflow optimizations. As a
result, ScaleFlow achieves 31.08× higher throughput.

Comparison with Previous Works. Compared with
the State-of-the-Art (SOTA) HLS optimization framework
ScaleHLS [40], ScaleFlow achieved 1.29× higher throughput,
respectively. We observed that for single-loop kernels (bicg,
gesummv, seidel-2d, symm, and syr2k), the performance of
ScaleFlow was on par with ScaleHLS due to single-loop ker-
nels not presenting any dataflow optimization opportunities.
In contrast, for the other multi-loop kernels, ScaleFlow outper-
forms ScaleHLS due to dataflow optimizations. When only
considering multi-loop kernels, ScaleFlow achieves 1.57×
higher throughput than ScaleHLS. We concluded that the
dataflow scheduling and parallelization problems are perva-
sive based on the evaluation results. Thus, ScaleFlow-OPT
can better optimize these kernels, ultimately leading to an
increased performance.

3.2. PyTorch Models Evaluation

Experiment Settings. We evaluate ScaleFlow with a set of
PyTorch deep neural networks (DNN) to understand its perfor-
mance on large-scale dataflow applications. The benchmarks
cover multiple categories of DNNs, including image classifi-
cation (ResNet-18 [13], MobileNet [14], ZFNet [44], VGG-
16 [35]), object detection (YOLO [32]), and fully-connected
networks (MLP). The optimization for these models exhibit
significant variations under dataflow setting, owing to the dis-
tinct layer types and interconnections between layers. The
target platform is one super logic region (SLR) of an AMD-
Xilinx VU9P FPGA. Table 3 shows the evaluation results.

Comparison with Previous Works. Again, we compare
ScaleFlow with ScaleHLS [40], where we observe an 8.54×
higher throughput. The throughput gains are much more signif-
icant than the C++ kernels due to large DNN models exposing
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Table 3: Evaluation results of ScaleFlow for PyTorch neural networks. The DNNBuilder results are directly from their paper [46]. To make fair
comparison, we constrained the FPGA resources to the same as DNNBuilder. The ScaleHLS designs are automatically generated by [40].

Model Compile
Time (s)

DSP
Number

Throughput (Samples/s) Improvements DSP Efficiency Improvements

ScaleFlow ScaleFlow v.s.
DNNBuilder

ScaleFlow v.s.
ScaleHLS ScaleFlow ScaleFlow v.s.

DNNBuilder
ScaleFlow v.s.

ScaleHLS

ResNet-18 83.1 667 45.4 - 3.3 (13.88×) 73.8% - 5.2% (14.24×)
MobileNet 110.8 518 137.4 - 15.4 (8.90×) 75.5% - 9.6% (7.88×)

ZFNet 116.2 639 90.4 112.2 (0.81×) - 82.8% 79.7% (1.04×) -
VGG-16 199.9 1118 48.3 27.7 (1.74×) 6.9 (6.99×) 102.1% 96.2% (1.06×) 18.6% (5.49×)
YOLO 188.2 904 33.7 22.1 (1.52×) - 94.3% 86.0% (1.10×) -
MLP 40.9 164 938.9 - 152.6 (6.15×) 90.0% - 17.6% (5.10×)

Geo. Mean 108.7 1.29× 8.54× 1.07× 7.49×

75.6X
41.5X

57.0X

ScaleFlow

Figure 2: Memory utilization comparison with ScaleHLS [40].

more opportunities for ScaleFlow to optimize the dataflow ar-
chitecture. For ZFNet and YOLO, ScaleHLS cannot produce
results due to the DNNs having irregular convolution sizes
and high-resolution inputs, respectively, demonstrating the
superior flexibility and scalability of ScaleFlow. For the four
benchmarks supported by ScaleHLS, we use DSP efficiency
to compare the two frameworks, calculated using:

E f f iciencyDSP =
T hroughput ×OPs

NumberDSP ×Frequency
, (1)

where OPs denotes the total number of multiply and accumu-
lation (MAC) operations per sample of the DNN, Through-
put is samples per second, and Frequency denotes the clock
frequency constant at 200MHz for both ScaleHLS and Scale-
Flow. DSP efficiency is a common metric for comparing the
efficiency of DNN accelerators across different platforms or
frameworks. A 100% of DSP efficiency indicates all instanti-
ated DSPs in the accelerator continuously operating without
stalling. ScaleFlow achieves 7.49× higher DSP efficiency
than ScaleHLS on average and 14.24× for ResNet-18. We
attribute the much higher efficiency for ResNet-18 to Scale-
Flow’s ability to optimize shortcut data paths.

Apart from the throughput and efficiency improvements, we
also observe substantial on-chip memory reduction by Scale-
Flow compared to ScaleHLS. As Figure 2 shows, ScaleFlow
can reduce memory utilization by 41.5× to 75.6× due to sev-
eral factors: (1) ScaleFlow can leverage loop tiling and local
buffer creation to only cache small tiles of intermediate re-
sults while enabling the dataflow execution. In comparison,
ScaleHLS must keep all intermediate results on-chip due to

the lack of external memory access support. (2) The more
advanced dataflow parallelization can drastically reduce the
buffer sizes. In summary, ScaleFlow can utilize computation
and memory resources more efficiently and achieve substantial
throughput improvements on DNN models.

Comparison with Dedicated DNN Accelerator. In addi-
tion to the comparison with SOTA HLS optimization frame-
works, we further compare ScaleFlow with a dedicated DNN
acceleration framework, DNNBuilder [46]. DNNBuilder has
RTL-based and hand-tuned IPs for accelerating multiple types
of layers in modern DNNs and can enable the dataflow ex-
ecution of all the instantiated IPs to achieve SOTA through-
put and efficiency on FPGAs. As shown in Table 3, Scale-
Flow achieves 1.29× and 1.07× higher throughput and DSP
efficiency compared to DNNBuilder, which already has an
extremely high DSP efficiency. Note that ResNet-18 and
MobileNet are not supported by DNNBuilder due to its lack
of support for shortcut paths and depthwise convolutions.
Through this comparison, we demonstrate the productivity and
performance of ScaleFlow outperforming a dedicated DNN ac-
celeration framework using human-generated customized RTL
IPs. Additionally, we demonstrate the flexibility of ScaleFlow,
which can adapt to a wide range of computational patterns.

4. Conclusion
In this paper, we propose ScaleFlow, which is an HLS frame-
work that can systematically transforms the algorithmic de-
scription of hardware into efficient dataflow implementations.
We propose a two-level dataflow representation, ScaleFlow-
IR, and a hierarchical dataflow optimizer, ScaleFlow-OPT,
significantly improving the productivity, performance, and
scalability of HLS-based dataflow accelerators. To demon-
strate the performance of ScaleFlow, we evaluate a set of
DNNs and C++ kernels, where ScaleFlow outperforms the
existing SOTA hand-tuned RTL-based DNN accelerator and
compilation-based HLS frameworks. We plan to open-source
the ScaleFlow framework and hope that it will serve as a new
open infrastructure for future dataflow architectural research,
allowing researchers to explore the vast design space effec-
tively and efficiently.
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