
High-level Synthesis for Domain Specific Computing
Hanchen Ye

hanchen8@illinois.edu
University of Illinois at Urbana-Champaign, USA

Hyegang Jun
hgjun2@illinois.edu

University of Illinois at Urbana-Champaign, USA

Jin Yang
jin.yang@intel.com

Intel, USA

Deming Chen
dchen@illinois.edu

University of Illinois at Urbana-Champaign, USA

ABSTRACT
This paper proposes a High-Level Synthesis (HLS) framework for
domain-specific computing. The framework contains three key com-
ponents: 1) ScaleHLS, a multi-level HLS compilation flow. Aimed to
address the lack of expressiveness and hardware-dedicated repre-
sentation of traditional software-oriented compilers. ScaleHLS in-
troduces a hierarchical intermediate representation (IR) for the pro-
gressive optimization of HLS designs defined in various high-level
languages. ScaleHLS consists of three levels of optimizations, in-
cluding graph, loop, and directive levels, to realize an efficient com-
pilation pipeline and generate highly-optimized domain-specific
accelerators. 2) AutoScaleDSE is an automated design space ex-
ploration (DSE) engine. Real-world HLS designs often come with
large design spaces that are difficult for designers to explore. Mean-
while, the connections between different components of an HLS
design further complicate the design spaces. In order to address
the DSE problem, AutoScaleDSE proposes a random forest clas-
sifier and a graph-driven approach to improve the accuracy of
estimating the intermediate DSE results while reducing the time
and computational cost. With this new approach, AutoScaleDSE
can evaluate thousands of HLS design points and find the Pareto-
dominating design points within a couple of hours. 3) PyTransform
is a flexible pattern-driven design customization flow. Existing HLS
flows demand manual code rewriting or intrusive compiler cus-
tomization to conduct domain-specific optimizations, leading to
unscalable or inflexible compiler solutions. PyTransform proposes
a Python-based flow that enables users to define custom matching
and rewriting patterns at a high level of abstraction, being able
to be incorporated into the DSL compilation flow in an automatic
and scalable manner. In summary, ScaleHLS, AutoScaleDSE, and
PyTransform aim to address the challenges present in the compila-
tion, DSE, and customization of existing HLS flows, respectively.
With the three key components, our newly proposed HLS frame-
work can deliver a scalable and extensible solution for designing
domain-specific languages to automate and speed up the process
of designing domain-specific accelerators.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISPD ’23, March 26–29, 2023, Virtual Event, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9978-4/23/03. . . $15.00
https://doi.org/10.1145/3569052.3580027

CCS CONCEPTS
• Hardware→ High-level and register-transfer level synthe-
sis.

KEYWORDS
HLS, domain-specific language, domain-specific computing, MLIR,
design space exploration
ACM Reference Format:
Hanchen Ye, Hyegang Jun, Jin Yang, and Deming Chen. 2023. High-level
Synthesis for Domain Specific Computing. In Proceedings of the 2023 In-
ternational Symposium on Physical Design (ISPD ’23), March 26–29, 2023,
Virtual Event, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3569052.3580027

1 INTRODUCTION
The exploding complexity and efficiency requirements of modern
applications are stimulating a strong demand for hardware acceler-
ation using heterogeneous platforms such as FPGAs. However, a
high-quality FPGA design is very hard to implement and optimize
as it requires FPGA expertise and proficiency in expressing the
design using low-level hardware descriptive languages (HDL). As a
result, the design iteration cycle is prolonged, ultimately extend-
ing the development time and lower cost for developing hardware
designs. In contrast, software applications can reach large-scale de-
ployment at an accelerated rate and cost, made possible due to the
high-level abstractions modern programming languages provide to
the developers.

The disparity between the software and hardware design pro-
cess has prompted the development of high-level hardware abstrac-
tion languages targeting certain computing domains, colloquially
termed domain-specific languages (DSL). The raising of the level
of abstraction of hardware design allows users to implement their
designs quickly due to being able to leverage the properties of
high-level programming models. As a result, DSL languages allow
the user to develop, optimize, verify, and reuse designs at the level
higher than hardware description languages, thereby significantly
shortening the development cycle and improving productivity.

In this work, we focus on the implementations of DSL that can
use High-Level Synthesis (HLS) to generate hardware descriptions.
However, existing design flows with HLS face several major chal-
lenges. First, there exists a representation problem of the hardware
as HLS tools mainly rely on existing programming languages de-
signed for sequential execution. Second, the current HLS input
languages, such as C/C++/OpenCL, do not represent the recent
advancement in the software development community. Most soft-
ware applications nowadays are developed with languages like

https://doi.org/10.1145/3569052.3580027
https://doi.org/10.1145/3569052.3580027
https://doi.org/10.1145/3569052.3580027


ISPD ’23, March 26–29, 2023, Virtual Event, USA Hanchen Ye, Hyegang Jun, Jin Yang, and Deming Chen

ScaleHLS
Compiler

HLS C++ or 
HLS PyThon

PyTorch or
Other DSL

AutoScaleDSE
Explorer

PyTransform
Customizer

Resource 
Constraints

Transform
DSL

Optimized
HLS C++

Figure 1: The proposed HLS framework for domain-specific
computing.

Python, which is at a higher level of abstraction than existing hard-
ware design flows. Third, the current HLS tools are mainly built for
small-scale module-based designs. As a result, handling large-scale
designs and searching for optimal designs in complex design spaces
remain challenging.

Recently there has been a growing interest in the research com-
munity on high-level programming languages for FPGAs. HeteroCL
[21] is one recent work that builds on the TVM framework [3]. Hete-
roCL is designed to be an API library of the Python Language where
a runtime compiler is used to interpret the design expressed as API
calls using the HeteroCL library to a C representation optimized
for the Merlin HLS compiler [7]. Similarly, the PyLog [13] compiler
interprets computation represented using the built-in Python syn-
tax to generate optimized C code for Vivado HLS [14]. Dahlia [28]
is another high-level programming language that compiles to HLS
C code. Dahlia uses Scala-like syntax and a type system to enforce
design constraints in the HLS code so that unrolling and memory
partitioning factors match, with the addition of compiler directives
to express the level of parallelism of the design.

In addition to the efforts in elevating the input abstraction level,
we have also witnessed a large number of papers investigating the
accurate and efficient quality of results (QoR) estimation methods
and automating the design space exploration (DSE) for HLS. The au-
thors of [40–42] proposed analysis-based approaches for estimating
the latency, power, and resource utilization of HLS designs. Neces-
sary design information is extracted from static dataflow graphs
or dynamic execution traces and then passed to analytical models
to generate the estimation. Apart from analysis-based approaches,
[25, 29] introduced machine learning methods to extract features
that cannot be parameterized by analytical models from the input
HLS designs, thereby deducing more accurate estimation and han-
dling more complicated designs. On top of QoR estimation, authors
of [40, 41] proposed automatic DSE tools based on the guidance
of resource utilization and performance metrics. More advanced
techniques, including polyhedral analysis and integer linear pro-
gramming (ILP) algorithms, are exploited in [43, 44] that propose
qualified design candidates and search for the optimal solution
under hardware resource constraints.

However, we argue that existing HLS frameworks lack a compi-
lation system dedicated for domain-specific hardware accelerators.
To address this problem, Section 3 presents a source-to-source com-
pilation tool named ScaleHLS [37–39] that automates the tedious
HLS optimization process. Then, we identify that the existing DSE

algorithms are not scalable to handle large HLS accelerators. There-
fore, Section 4 presents AutoScaleDSE [17] that we have done to
address the automation of the design space exploration process.
Finally, customized optimizations are essential for domain-specific
accelerators to achieve high performance. In Section 5, we present
a new and novel method named PyTransform for representing com-
piler optimizations in a high-level language that allows the user to
configure custom compiler optimizations during the development
of the application. Figure 1 shows how the three components above
are integrated in our proposed domain-specific HLS framework.
The framework can take HLS C++/Python or DSLs, such as PyTorch,
as input designs and compile them to optimized HLS C++ through
the ScaleHLS compiler. On the right side, resource constraints can
be passed to the AutoScaleDSE explorer and automatically explore
the design space of HLS designs in ScaleHLS. On the left side, we
propose a transform DSL that can be passed to the PyTransform
customizer to optimize HLS designs with user-defined patterns.

In the remainder of this paper, we first present a brief survey
of current domain-specific languages that are used to accelerate
the development of FPGAs in Section 2. Then, Sections 3, 4, and 5
present the details of ScaleHLS, AutoScaleDSE, and PyTransform,
respectively. Section 6 discusses future works and in Section 7 we
conclude this paper.

2 BACKGROUND
2.1 Domain-Specific Programming Languages
Developing a DSL that can accurately and flexibly capture the de-
sired hardware description has long been a challenge that has seen
much active research. As a result, a vast body of work exists that
tries to solve this representation problem using various methods
spanning many different programming languages and models. In
this section, we briefly introduce the various DSL works with a
focus on HLS.

2.1.1 PyLog. PyLog [13] presents a Python-based DSL for FPGAs
using general Python-compatible syntax. By raising the abstraction
level to Python from the comparatively low-level C/C++, users of
PyLog can express their designs for both the host and device using
the high-level operators that PyLog provides. Designs expressed
with these high-level operators can be efficiently compiled by the
PyLog compiler to highly optimized HLS designs, automating the
process of exploring design space. The optimization process is aided
by the PyLog intermediate representation, where computational
patterns that can be parallelized are automatically identified by
the PyLog compiler, transforming it into an efficient HLS C/C++
implementation. Furthermore, users of PyLog are able to express
both the host and device code at the same level of abstraction,
allowing a unified framework for the functional simulation of the
design. In addition, the unified representation enables the user to
co-design the host and device code, automating the host and device
code generation using the PyLog compiler.

2.1.2 HeteroCL. HeteroCL [21] proposes a DSL that can efficiently
represent applications targeting the CPU+FPGA platform. The pro-
gramming model of HeteroCL uses a blend of declarative symbolic
expressions based on the sequential Python language. Using this ap-
proach, HeteroCL expresses computations in a manner that exposes



High-level Synthesis for Domain Specific Computing ISPD ’23, March 26–29, 2023, Virtual Event, USA

high-level optimization opportunities. HeteroCL’s strength lies in
its ability to represent computations using symbolic expressions
to decouple the algorithmic specification from the three hardware
design dimensions: compute, data type, and memory architecture,
with the added capability to capture the interdependence between
these dimensions. Through HeteroCL, the user can efficiently ex-
periment with various design choices and experiment with various
degrees of parallelism, data types, and memory architecture due to
the design choices being independent through the aforementioned
decoupling. Internally HeteroCL extends the Halide IR used by TVM
[3, 4] to express, optimize, and output designs for various target
platforms and language frameworks such as HLS C/C++ [14–16],
OpenCl [18], and Merlin C [7]. Furthermore, through symbolic rep-
resentation, computation can be efficiently and effectively mapped
to spatial architecture templates using the SODA [5] framework.
This work is notable for its potential to raise the level of abstraction
while not obfuscating the underlying hardware design.

2.1.3 FCUDA. FCUDA [8, 30, 31] presents a compilation flow that
compiles an FPGA design expressed in the CUDA [24] programming
model to RTL. FCUDA leverages CUDA’s expressiveness, which
captures a design’s parallelism using CUDA-specific built-it vari-
ables and primitives. FCUDA, using CUDA code annotated with
information regarding the desired resources of the target FPGA,
transforms the input code into a High-Level Synthesis (HLS) com-
patible C representation. This intermediate C representation is then
further compiled by an HLS tool, such as AutoPilotC (now part
of Vitis) [15], into RTL code. The key contribution of FCUDA lies
in the compiler’s ability to transform CUDA code that expresses
parallelism using built-in variables into an explicit C representation
that expresses the execution of CUDA light-weight kernel threads
in a repackaged coarse-grained multi-threading execution model on
top of FPGAs. As a result, developers of FCUDA can leverage their
existing CUDA knowledge and skills to program FPGAs, which can
provide significant performance and productivity improvements
over traditional FPGA programming methods.

2.2 HLS Compilation
Traditional HLS compilers typically consist of three compilation
stages, scheduling, allocation, and binding, to compile HLS pro-
grams written in different languages into RTL accelerators. How-
ever, the large design space brought by HLS designs is known to
be challenging to explore. In order to overcome this limitation of
HLS, we have seen multiple HLS compilers proposed for exploring
and optimizing HLS designs automatically. In this section, we will
introduce several representative works in this direction.

2.2.1 Merlin. The Merlin compiler [7] is a source-source compi-
lation flow that raises the level of abstraction from a hardware-
oriented C/OpenCL representation to a software-oriented C/C++
representation. The Merlin compiler takes an algorithmic software
description as input with minimal compiler directives that only tell
which code portion to accelerate. Based on this description, the
Merlin compiler can exploit fine-grained loop-level parallelism and
pipelining and coarse-grained task-level parallelism and pipelining.

2.2.2 SODA-OPT. SODA-OPT [1] is another source-to-source com-
pilation tool that automates the optimization process for HLS. The

SODA-OPT extends the MLIR compiler infrastructure, developing
SODA-OPT compiler passes and custom IR (intermediate repre-
sentation). By representing the target design at various levels of
abstraction, SODA-OPT can efficiently apply compiler optimization
passes at the most optimal level of abstraction. Furthermore, the op-
timization passes that transform the code (used to increase the level
of parallelism and memory bandwidth and optimize the order of
operations) are applied directly to the compiler IR allowing SODA-
OPT to target various different HLS tools. Notably, SODA-OPT can
identify computational patterns suited for acceleration through
pattern matching and separate the algorithmic input design into
host and device codes. Following this separation, the SODA-OPT
design space exploration engine automates the process of finding a
suitable combination of compilation passes by interfacing with the
SODA-OPT compiler passes and the HLS backend.

2.2.3 HPVM2FPGA. HPVM [19] is an explicitly parallel extension
of LLVM IR for heterogeneous systems, designed to enable per-
formance portability across different parallel hardware. On top of
HPVM, HPVM2FPGA [9] adds an optimization framework that
uses compiler optimizations and design space exploration (DSE) to
automatically tune a hardware-agnostic program for a given FPGA.
Notably, HPVM2FPGA supports host-device partitioning and host
code generation at the IR level.

3 MULTI-LEVEL HLS COMPILATION
3.1 Motivation
Although DSLs have proven to be powerful tools in raising the level
of abstraction of hardware design, accurate representation of the
desired hardware has long been a challenge. Works such as PyLog
[13], FCUDA [8, 30, 31], and HeteroCL [21] aim to solve this repre-
sentation problem at a higher level of abstraction, above the mature
and widely used C/C++ programming language/model. Although
previous works show promise in their ability to capture the desired
hardware at this higher level of abstraction, as a side-effect, this
added abstraction further removes the user from the final hardware
design. Thus, it increasingly becomes challenging to understand
how a design decision made at a higher level of abstraction is trans-
lated into the low-level hardware design, having to go through
multiple compiler optimization passes and compilation flows. In
addition, achieving efficient and high-performing designs using a
high-level DSL requires the user to have expertise in how the high-
level design decisions impact the final design. Even then, due to the
complex interplay between various compiler passes, implementing
high-performing hardware design using a high-level DSL remains
challenging. With this in mind, we developed ScaleHLS to auto-
mate the process of optimizing hardware designs written in Python
(PyTorch [32]) and C/C++ by embracing the MLIR [22] framework
and the community. Furthermore, the transformation process is
designed to preserve the transparency of the compiler optimiza-
tion passes from the algorithmic description to the HLS-compatible
optimized C/C++ design.

3.2 ScaleHLS Compiler
3.2.1 Framework. We propose ScaleHLS [37–39], a compiler tool
for HLS that aims to address the representation problem of DSL.



ISPD ’23, March 26–29, 2023, Virtual Event, USA Hanchen Ye, Hyegang Jun, Jin Yang, and Deming Chen

A�ne HLSCpp

LinalgTOSA

MemRefA�ne

...

Existing DialectScaleHLS DialectScaleHLS Tool

ScaleHLS
Graph 

Opt. Passes

Loop 
Opt. Passes

Directive 
Opt. Passes

HLS QoR 
Estimator

Automated 
DSE Engine

Transform and
Analysis Library

HLS C/C++ PyTorch

HLS C/C++Verilog...

Translate

Lowering

Transform

Graph-level IR

Loop-level IR

Directive-level IR

Polygeist 
Front-end 

Torch-MLIR 
Front-end 

HLS C/C++ 
Emitter

CIRCT 
Framework 

MemRef

Vector

Vector

Tensor

Figure 2: ScaleHLS framework.

ScaleHLS leverages the multi-level hierarchy of HLS designs and
advanced compilation techniques to address the automation and
scalability issues of existing HLS flows. Figure 2 shows the overall
architecture of the ScaleHLS framework. ScaleHLS is built upon
MLIR [22] and supports C/C++ and PyTorch programs as inputs
through the Polygeist [27] and Torch-MLIR [2] front-ends, respec-
tively. Once the input programs are parsed into MLIR, ScaleHLS
supports three levels of representation to apply the HLS-oriented
optimizations progressively.

At the highest level, ScaleHLS uses tosa (Tensor Operator Set
Architecture), linalg (Linear Algebra), and tensor dialects [22]
to represent the tensor-level computation graph, where graph opti-
mizations, such as node fusion and coarse-grained pipelining, can be
performed efficiently. Dialects are used to express the code at a cer-
tain level of abstraction, allowing for the design of highly-efficient
compiler passes. In MLIR, dialects refer to a set of operations, types,
attributes, and other language abstractions used to represent com-
putations and data and are the building blocks that constitute the
intermediate representations of MLIR. At the middle level, ScaleHLS
uses affine, vector, and memref (Memory Reference) dialects [22]
to explicitly represent the loop structures in an affine format in
order to perform the affine loop analyses and optimizations. Finally,
at the lowest level, we introduce an hlscpp dialect to represent
the HLS-specific directives (such as loop pipelining) and primi-
tives (such as multiplication primitive) to fine-tune the hardware
micro-architecture and enable an efficient code generation.

3.2.2 Optimizations. ScaleHLS aims to enhance the HLS compi-
lation process by providing a collection of classes and methods
for analyzing and optimizing HLS designs and generating code.
The library features three main components, the Estimator, the
Explorer, and the Emitter, designed to construct and solve the
QoR estimation, DSE, and HLS C++ emission problems, respectively.
The Estimator is integrated into the Explorer for efficient design
evaluation, and is structured in a hierarchical manner to avoid full
estimation with each iteration. The Emitter is also hierarchical,
enabling the compiler to have a more precise interaction with RTL
generation tools.

ScaleHLS also features a set of optimization APIs organized into
four categories: Graph, Loop, Memory, and Directive. The Graph

Table 1: Evaluation results of ScaleHLS on representative
DNN models. Speedup is with respect to the baseline designs
compiled from PyTorch by ScaleHLS but without the multi-
level optimization.

Model Speedup Compile
Time Mem. DSP DSP

Effi.
TVM [26]
DSP Effi.

ResNet-18 3825.0× 60.8s 91.7Mb 1326 1.343 0.344
VGG-16 1505.3× 37.3s 46.7Mb 878 0.744 0.296

MobileNet 1509.0× 38.1s 79.4Mb 1774 0.791 0.468

optimizations aim to improve the tosa dialect and encompass sim-
plification and operation fusion. Loop optimizations, based on the
affine dialect libraries, include methods for loop perfection, vari-
able bound loop removal, tiling, and unrolling to enhance data
locality and computation parallelism. The Memory optimizations
aim to boost the efficiency of memory access, given the scarcity of
memory bandwidth in hardware accelerators. The Directive opti-
mizations are built on top of our hlscpp dialect abstractions and
include loop and function pipelining and array partition.

3.2.3 Evaluation. We evaluate ScaleHLS’s ability to handle large
and complicated HLS designs using three representative DNN (deep
neural networks), ResNet-18 [11], VGG-16[36], and MobileNet [12],
targeting the CIFAR-10 [20] image classification task. These DNN
models are constructed with a large number of different hidden
layers and have sophisticated inter-layer dependencies. The target
platform is one SLR (super logic region) of Xilinx VU9P FPGA,
which is a large FPGA containing 115.3 Mb on-chip memory, 2280
DSPs, and 394,080 LUTs on each SLR. The PyTorch [32] implemen-
tations are parsed into ScaleHLS and optimized using the proposed
multi-level optimization methodology. Graph, loop, and directive
optimization passes are applied sequentially to improve the design
quality at the corresponding IR level.

The experimental results are shown in Table 1. By combining
three optimization levels, we can observe that the generated HLS de-
signs achieve significant speedups ranging from 1505.3× to 3825.0×
in terms of throughput compared to the baseline designs, which
are compiled from PyTorch to HLS C/C++ through ScaleHLS but
without the multi-level optimization. Notably, as shown in Table 1,
ScaleHLS only consumes 37.3 to 60.8 seconds to optimize the large
HLS designs, demonstrating the efficiency and scalability of our
optimization methodology.

4 DESIGN SPACE EXPLORATION
4.1 Motivation
Fully automating the design space exploration process of HLS has
long been a challenge. The difficulty lay in the DSE engine’s abil-
ity to accurately and efficiently explore the vast design space HLS
designs present and is currently the primary limiting factor of au-
tomating the DSE process. The final synthesized RTL design is
nearly directly linked to how the design is represented using the
high-level language. Therefore, depending on the structure and fac-
tor of loops, arrays, functions, and compiler directives significantly
impact the final design’s quality. Accordingly, the design space is
proportional to the number of tunable knobs in the design space,
where the code structure and the compiler directive constitute the



High-level Synthesis for Domain Specific Computing ISPD ’23, March 26–29, 2023, Virtual Event, USA

Table 2: QoR DSE results of computation kernels. Speedup is
with respect to the baseline designs from PolyBench-C [33]
without the optimization of DSE.

Kernel Prob. Size Speedup Tiling Sizes Pipeline II

GEMM 4096 768.1× [8, 1, 16] 3
GESUMMV 4096 199.1× [8, 16] 9
SYR2K 4096 384.0× [8, 4, 4] 8
SYRK 4096 384.1× [64, 1, 1] 3
TRMM 4096 590.9× [4, 4, 32] 13

tunable knobs of the design space. The method for effective DSE
may vary from brute force searching to more intelligent methods,
incorporating different forms of supervised learning.

A recent survey of HLS DSE [35] reveals that due to the lack of
compiler support and due to the immense design space, current
DSE engines can only target the compiler directives and cannot
optimize for the code structure. Moreover, due to existing DSE
engines having to rely on the computationally and time-intensive
HLS synthesis compiler to evaluate intermediate design points, DSE
engines were limited to exploring only a handful of design points
in the exploration process. Furthermore, we found it impossible to
beat hand-tuned designs through compiler directives alone without
code restructuring.

ScaleHLS was built with the desire to automate the design pro-
cess of HLS, and automating the design space exploration process
to explore the vast design space that includes code transformation
was a natural next step in this line of thought. The compiler passes
that we developed allowed us to explore the code optimization di-
mension of the design space. Furthermore, these passes allowed us
to estimate intermediate design points’ performance without invok-
ing the computationally and time-intensive HLS synthesis compiler,
enabling us to explore the design space to a greater degree.

4.1.1 QoR Design Space Exploration Engine. Downstream RTL gen-
eration tools like Vivado HLS [14], Vitis HLS [15], and Intel HLS
[16] can take anywhere from a few minutes to several hours to
report the synthesis results. Resulting in (1) restricting the number
of design points assessed during Design Space Exploration and (2)
significantly increasing the DSE time to up to tens of hours. Our
Quality of Result (QoR) estimator aims to address this issue using
the ALAP (as late as possible) algorithm to schedule each MLIR IR
block of the design.

By utilizing the compiler passes and intermediate representa-
tion (IR) we developed, as well as additional heuristics that explore
neighboring Pareto-optimal design points, we could explore thou-
sands of design points in the order of minutes. Using this approach,
we significantly increased the performance of single loop kernels
summarized in Table 2. As a case study, for the GEMM kernel, our
QoR-based DSE engine was notable in its ability to outperform de-
signs where an experienced HLS user manually restructured code
and systematically searched the compiler directive design space.

4.1.2 Limits of the QoR Design Space Exploration Engine. The re-
sult of Table 2 clearly demonstrates the QoR-based DSE engine’s
ability to produce high-quality solutions. Using this approach, we
uncovered more efficient but unintuitive solutions that were nearly
impossible to be deduced by the user. We theorized that these

Table 3: QoR-Base vs AutoScaleDSE using the PolyBench [33]
medium dataset.

Implementation Latency Speedup DSP FF LUT

BICG
Baseline 16𝑚𝑠 1x 0% 0% 0%
QoR-Base 42.050 𝜇𝑠 380x 50% 24% 37%

AutoScaleDSE 42.050 𝜇𝑠 380x 50% 24% 37%

Correlation
Baseline 1.367 𝑠 1x 0% 0% 1%
QoR-Base 0.942 𝑠 1.5x 15% 18% 51%

AutoScaleDSE 15.467𝑚𝑠 88x 4% 7% 27%

2MM
Baseline 1.542 𝑠 1x 0% 0% 0%
QoR-Base 8.281𝑚𝑠 186x 55% 21% 46%

AutoScaleDSE 1.722𝑚𝑠 895x 76% 17% 46%

3MM
Baseline 2.054 𝑠 1x 0% 0% 0%
QoR-Base 72.930𝑚𝑠 28x 35% 20% 33%

AutoScaleDSE 1.996𝑚𝑠 1029x 61% 17% 37%

Table 4: AutoScaleDSE evaluation results for MachSuite [34]
and Rodinia [6] benchmarks.

Implementation Latency Speedup DSP FF LUT

Backprop Baseline 754𝑚𝑠 1x 24% 19% 32%
MachSuite AutoScaleDSE 62.669 𝜇𝑠 12x 87% 41% 75%
Lud - tiled Baseline 1.650 𝑠 1x 1% 1% 3%
Rodinia AutoScaleDSE 0.846 𝜇𝑠 2x 15% 21% 55%

unintuitive but efficient solutions performed well because these
solutions synergized with the heuristics the downstream HLS com-
piler used to schedule and bind the operations. However, as a result
of these HLS heuristics and the exponentially growing design space
of large-scale designs with multi-loops, the QoR-based DSE engine
incurred significant scalability issues and degradation in the quality
of the final solutions.

An initial solution to this scalability problem would be dividing
and conquering the whole design space. This approach aims to
tame the exponential growth of the design space by exploring the
design space for individual loops and finding the Pareto optimal
point that corresponds to a specific tiling, loop parallelism, and
memory bandwidth strategy. Afterward, the separate design spaces
are combined to create a global design space to determine the final
Pareto optimal design.

However, one major flaw in this approach is that the overall
design cannot be divided into independent design spaces. As real-
world HLS designs have multiple loops that share resources and
communicate with each other over common memory elements, an
optimal solution for one sub-design space can lead to a worse global
solution due to incompatibility between sub-solutions. As a result,
a combined global design point cannot simply be constructed from
the sum of the optimization strategies and performance estimations
for each sub-design.

4.2 AutoScaleDSE Explorer
As a solution to these problems, we present AutoScaleDSE [17], a
scalable DSE engine capable of finding the Pareto optimal solution
under resource constraints for large real-world HLS designs. Our
design space exploration engine aimed to balance the time spent on
design space exploration and HLS compilation. By identifying a key



ISPD ’23, March 26–29, 2023, Virtual Event, USA Hanchen Ye, Hyegang Jun, Jin Yang, and Deming Chen

1 def montgomery_redc(A, M, v, k, z):
2 C = []
3 for i in range(0, len(A)):
4 pytransform.require(lambda v: v == -1, v)
5 S = z + 1
6 pytransform.require(lambda S, k: S == 1 << k, S, k)
7
8 a = A[i]
9 s = (a * v) & z
10 r = (a + s * M) >> k
11 if r < M:
12 C.append(r)
13 else:
14 C.append(r - M)
15 return C

Listing 1: A Montgomery reduction example in Python.

limitation in accurately estimating the intermediate DSE results
without invoking the downstream HLS compiler, we were able to
decrease the DSE runtime to a couple of hours while also being
able to evaluate thousands of design points.

The key contributions of this approach stem from the use of a
random forest classifier and a code-aware graph-driven approach.
For large-scale HLS designs, the traditional approach of stitching
together sub-solutions was not viable due to the incompatibility
of sub-solutions having an adverse effect on the final solution.
However, having recognized that a good amount of sub-solutions
were compatible, we used a random forest classifier to merge sub-
solutions (generated using the QoR estimator-based DSE) that were
compatible. We theorized that the compatibility of sub-solutions
was due to the heuristics of the downstream HLS compiler and
aimed to predict the compatibility of sub-solutions without invok-
ing the HLS compiler using the random forest classifier. Further-
more, a lexical analyzer was developed to extract essential infor-
mation regarding the design to address the characteristics of large
HLS designs consisting of multiple functions and loops, of which
not all share resources. Based on this information, a graph repre-
sentation of the HLS design was constructed and used to guide the
DSE process, intelligently merging sub-solutions, giving weight to
more tightly correlated sub-solutions that share resources.

We evaluated the quality of this new approach using four Poly-
Bench [33] benchmarks with the addition of two large-scale bench-
marks from the MachSuite [34] and Rodinia [6] benchmark sets.
The presented results in Table 3 and Table 4 have been collected
from the report generated by Vivado HLS 2019.2 targeting the
‘xc7z045-ffg900-2’ device. For the experiments in Table 3 compared
to the QoR-based DSE, AutoScaleDSE outperformed the previous
approach in terms of latency and resource utilization by up to 59X.
Furthermore, for the experiments in Table 4, we demonstrate Au-
toScaleDSE’s ability to explore previously non-viable large designs,
being able to decrease the latency of designs by up to 12X.

5 PATTERN-DRIVEN DESIGN OPTIMIZATION
5.1 Motivation

Although existing HLS frameworks have exposed common HLS
optimizations, such as loop unrolling and array partitioning, domain-
specific computing often demands different customized optimiza-
tions to improve the efficiency of certain computation patterns and
fine-tune the hardware performance. For example, Listing 1 shows a

Transform
DSL

PDL Dialect
HLS 

Transform
Dialect

Original HLS 
Design

Optimized 
HLS Design

Transform 
Driver

MLIR

Figure 3: Architecture of PyTransform flow.

Montgomery reduction implemented in Python. Montgomery algo-
rithm is a method for performing modular arithmetics, particularly
those involving large integers. The algorithm allows for efficient
modular multiplication, which is used in many cryptographic algo-
rithms such as the RSA algorithm. As shown in Listing 1, as long
as the pre-requirements at line 4 and 6 are met, the expression at
line 9 can be rewritten to a new form with the following equations:

𝑠 = (𝑎 ∗ 𝑣) & 𝑧 = (𝑎 ∗ −1) % 𝑆

= 𝑆 − (𝑎 % 𝑆) = 𝑆 − (𝑎 & 𝑧) (1)

where 𝑎 is a number in the normal or Montgomery space, 𝑣 and
𝑧 are twiddle factors, and 𝑆 is equal to 𝑧 + 1. We can observe that
after the rewriting, the original resource-consuming multiplication
operator is replaced with much cheaper operators. Such customized
optimizations often only have impacts in specific domains but are
essential for generating efficient accelerators of these domains.
However, general-purpose HLS frameworks or libraries are not
possible for covering these customized optimizations of different
domains beforehand. As a result, to apply these optimizations, one
way is manually rewriting the HLS code into new forms, which
is apparently not scalable for large HLS designs with hundreds
of applicable optimizations. Another more scalable way is extend-
ing existing HLS frameworks or libraries with new customized
optimization passes to automatically transform the HLS designs.
However, this way requires the user to implement compiler passes
with low-level languages, such as C++, thus heavily relies on com-
piler expertise. Therefore, this approach offers low accessibility to
hardware designers and also runs counter to the philosophy of HLS
that aims to raise the abstraction level of hardware design.

5.2 PyTransform Customizer
5.2.1 Overview of the Flow. In order to bridge this gap and provide
a scalable and high-level design methodology for the optimiza-
tion of domain-specific accelerators, we introduce a pattern-driven
design optimization flow called PyTransform. Figure 3 shows the ar-
chitecture of the PyTransform flow. A Python-based HLS transform
DSL is first introduced to describe 1) the patterns to be matched and
optimized, and 2) the rewriting rules to be applied. The patterns
and rewriting rules are then parsed into an existing PDL (Pattern
Descriptor Language) dialect and a new HLS Transform dialect,
which is an extension of the ScaleHLS dialects. Finally, the two di-
alects are used to guide a transform driver to automatically traverse
the IRs parsed from the original HLS design, match and rewrite



High-level Synthesis for Domain Specific Computing ISPD ’23, March 26–29, 2023, Virtual Event, USA

1 @pytransform.is_pattern(benefit=1)
2 def pattern_expr():
3 dtype = pytransform.Int(32)
4 v = pytransform.value(dtype)
5 pytransform.require_pattern(lambda v: v == -1, v)
6
7 z = pytransform.value(dtype)
8 S = z + 1
9 k = pytransform.value(dtype)
10 pytransform.require_pattern(lambda S, k: S == 1 << k, S, k)
11
12 a = pytransform.value(dtype)
13 s = (a * v) & z
14 expr_rewrite(s, S, a, z)
15
16 @pytransform.is_rewrite
17 def expr_rewrite(s, S, a, z):
18 new_s = S - (a & z)
19 pytransform.replace(s, new_s)

Listing 2: A expression rewriting pattern in Python.

the patterns, and generate the optimized HLS design. Both the IRs
and transform driver are implemented within the MLIR framework.
With such a design methodology, once a pattern rewriting rule is
described with our python-based DSL, the corresponding optimiza-
tion can be applied to any HLS designs without any manual effort.
Meanwhile, the DSL is designed with flexibility and scalability in
mind and can provide high-level interfaces for hardware designers
to describe the desired optimization patterns for domain-specific
accelerators. The remainder of this section will use two examples
to demonstrate the key features and advantages of our DSL.

5.2.2 Expression Rewriting. In Listing 2, an expression rewriting
pattern, pattern_expr, is defined as a Python function annotated
with an @is_pattern decorator. In this pattern, we first attempt
to match an int32 value v that equals to -1 at line 3-5. Similarly,
we then attempt to match another value z at line 7. Then, at line
8, we use an expression of the matched value z to match another
value S that is equal to z + 1. One can observe that in the pattern
definition function of our DSL, expressions betweenmatched values
are interpreted as a pattern to match new values. Once we have
successfully matched values a, v, and z, we can attempt to match
the target expression at line 13. Finally, at line 14, we pass the
matched values to a rewriting function, expr_rewrite, which is
defined at line 17. In this rewriting function, we construct a new
expression with the matched values, S, a, and z, and replace the
original expression with the new one at line 18-19. One can observe
that different with the pattern definition functions, the expressions
inside of rewriting functions are used for the construction of new
IRs. Note that in our DSL, the pattern definition function should
always be terminated with a function call to a rewriting function.

5.2.3 Loop Rewriting. Apart from expression matching and rewrit-
ing, our DSL also supports more advanced transformations such
as loop unrolling, etc. In Listing 3, we first attempt to match three
values, S, a, and z, and an expression S - (a & z) at line 3-7 simi-
lar to what we did in Listing 2. However, instead of rewriting the
matched expression into a new form, we first obtain the parent loop
enclosing the expression at line 12. Then, we split the matched loop
into two loops, outer and inner. Finally, we unroll and pipeline
the inner and outer loop, respectively, at line 14 and 15. The unroll
and pipeline primitives are implemented as building blocks of our

1 @pytransform.is_pattern(benefit=1)
2 def pattern_loop():
3 dtype = pytransform.Int(32)
4 S = pytransform.value(dtype)
5 a = pytransform.value(dtype)
6 z = pytransform.value(dtype)
7 s = S - (a & z)
8 loop_rewrite(s)
9
10 @pytransform.is_transform
11 def loop_rewrite(s):
12 loop = pytransform.parent_loop(s)
13 outer, inner = pytransform.split(loop, factor=2)
14 pytransform.unroll(inner, factor=2)
15 pytransform.pipeline(outer, initial_interval=1)

Listing 3: A loop rewriting pattern in Python.

Table 5: PyTransform result of Montgomery reduction.

Implementation Latency
Latency
Compare DSP

DSP
Compare

Original 262 1.00× 192 1.00×
PyTransform 265 1.01× 130 0.68×

DSL that can be combined flexibly at a high level to define various
rewriting rules.

5.2.4 Evaluation. Weevaluated the performance of theMontgomery
reduction example shown in Listing 1 with Vitis HLS [15]. Table 5
shows the evaluation results. The original design is compiled with-
out the optimization of PyTransform, while the PyTransform design
is optimized by a set of rewriting patterns defined in our proposed
DSL. One can observe that the PyTransform design maintained a
similar latency while only utilizing 0.68× of DSP resources com-
pared to the original design, demonstrating the effectiveness of our
PyTransform customizer.

5.2.5 Discussion. Our pattern-driven transform DSL can precisely
capture the optimization opportunities in domain-specific accel-
erators and conduct the optimizations in a scalable way. On one
hand, compared to manual code rewriting, our DSL can describe
the rewriting pattern in a structured manner and once a pattern is
implemented in our DSL, the rewriting can be applied automati-
cally with no human intervention. On the other hand, compared
to the customized compiler passes, our DSL significantly reduces
the difficulty of implementing an HLS optimization and allows
hardware designers without compiler expertise to customize their
HLS design. Note that our DSL still has some building blocks being
implemented in C++ and hidden from the users, such as the loop
unroll and pipeline. This is designed intentionally because we
want to abstract away the low-level programming details and strike
the balance between flexibility and complexity of programming.
By integrating PyTransform into the ScaleHLS compiler, users are
able to customize new optimizations conveniently and combine
with the existing optimizations provided by ScaleHLS to generate
customized domain-specific accelerator designs.

6 FUTUREWORKS
This work proposed ScaleHLS, AutoScaleDSE, and PyTranform
to tackle the challenges present in the compilation, design space



ISPD ’23, March 26–29, 2023, Virtual Event, USA Hanchen Ye, Hyegang Jun, Jin Yang, and Deming Chen

exploration, and customized optimization of domain-specific HLS
designs. This work still has several research directions remaining
for future works:

6.1 Optimization of dataflow architecture. ScaleHLS proposed a
primary support for automatically generating and legalizing dataflow
architecture in HLS designs. However, ScaleHLS leveraged the con-
ventional function call graph to represent the hierarchical dataflow
structure, where each function call is corresponding to a dataflow
stage. However, the function call graph is originally designed for
software compilation. Due to the lack of expressiveness on hard-
ware properties, such representation is not suitable for serving the
flexible construction and low-level optimization of HLS dataflow
structures. As a result, a systematic framework for optimizing the
hierarchical dataflow structures in domain-specific accelerators are
desired in the future.

6.2 Optimization of external memory access. With more and more
data involved in the computation of different domains and the
scarce bandwidth of external memory, the efficiency of external
memory access, including DDR and HBM, becomes more important
than ever in domain-specific accelerators. Through static analysis
on the HLS IR, the efficiency of external memory access could be
optimized through: 1) Vectorization, which can bundle multiple
contiguous memory accesses into a single one and increase the
bitwidth of the memory interface. 2) Tiling and scratchpad gener-
ation, which can effectively improve the data locality and expose
more opportunities of data reuse. 3) Memory layout permutation,
which can accommodate the tiled/sliced memory access pattern
and increase the burst length of the memory interfaces.

6.3 Dataflow-aware design space exploration. AutoScaleDSE pro-
posed a scalable DSE solution to find the Pareto-dominating HLS
design. Although AutoScaleDSE has considered the connectedness
between different loop nests during the exploration, the efficiency
of dataflow execution is not thoroughly considered yet. To enable
the dataflow-aware solution, at least two levels of design space are
envisioned to be explored properly: 1) At the high level, different
node fusion and decomposition may result in different trade-offs
of performance and resource utilization. 2) At the low level, the
latency balancing of dataflow nodes can significantly impact the
performance, thus demands wise selection of node parallelization
and buffer partition strategies.

6.4 Verifiable HLS. Apart from the generation of highly-optimized
hardware designs, another critical challenge is to ensure the cor-
rectness of the high-level design flow in a scalable manner that can
effectively deal with the increased design complexity. Due to the
complicated functionality and hardware hierarchy, formal proper-
ties for verification are difficult to establish, while the complexity
of proving correctness restricts the scalability of the verification
procedure. As a result, a need for a more coherent multi-level IR
has recently arisen to overcome these challenges. The new IR will
be more advantageous for representing the hardware designs of
various scales and design verification semantics, which can deliver
highly-optimized design solutions and alternatives while achieving
provably correct and scalable verification of high-level designs.

6.5 Low-latency domain-specific applications. In the recent decade,
AI and ML algorithms have shown remarkable capabilities in mak-
ing sense of extensive datasets. Following this trend, many argue
and advocate using these algorithms in the pipeline of various
domain-specific research. For example, in the field of High-Energy
Particle Physics (HE), the Large Hadron Collider (LHC) is expected
to experience an increase in data rates in the order of petabits per
second following the upgrades in 2025 [? ]. This far exceeds any
storage and analysis capacity of any device and, thus, creates a need
for a computing platform that can process these large data streams
in real-time within a small time frame. Similarly, the domain of
Multi-Messenger Astrophysics (MMA) studies astronomical events
using multiple channels of observation, which include channels of
photons, gravitational waves, and neutrinos. Thus, to have the best
chance of capturing transient astronomical events using multiple
channels, the detection of an event at any one of the channels must
be as fast as possible. As for the neuroscience domain, there is a
need for low-latency computing platforms that can facilitate the
timely detection and recognition of brain states [10, 23]. This small
selection of domain-specific research fields has the commonality
of the workload being sensitive to latency, and FPGAs are well-
positioned to meet this demand. With this in mind, we are working
towards expanding our framework, focusing on the three domains
HE, MMA, and neuroscience as part of the ongoing research at
the A3D3 center. We expect that in the future, domain-specific re-
searchers will be able to implement and deploy AI/ML workloads
tailored to their needs on an FPGA programmed using DSLs of their
choice.

7 CONCLUSION
In this paper, we explore the current state-of-the-art works in
domain-specific languages designed to raise the level of abstraction
for FPGAs. In the process, we identified key challenges in develop-
ing a suitable domain-specific language and framework proposing
solutions for each. ScaleHLS addresses the representation problem
for HLS, presenting compiler intermediate representations that the
compiler can leverage to optimize the algorithmic description of the
design. AutoScaleDSE further builds upon the compiler infrastruc-
ture to develop a scalable design space exploration engine that can
systematically and efficiently explore the vast design space of HLS
designs. Finally, PyTransform proposes a systematic methodology
that allows the user to express compiler optimization strategies at
a higher programming level. In conclusion, we present an arsenal
of tools that FPGA developers can leverage to significantly accel-
erate the process of implementing design using domain-specific
languages.

ACKNOWLEDGMENTS
We thank Jeremy Casas and Zhenkun Yang of Intel for the insightful
discussions. This work is supported in part by NSF 2117997 grant
through the A3D3 center and SRC 2023-CT-3175 grant.

REFERENCES
[1] Nicolas Bohm Agostini, Serena Curzel, Vinay Amatya, Cheng Tan, Marco Min-

utoli, Vito Giovanni Castellana, Joseph Manzano, David Kaeli, and Antonino
Tumeo. 2022. An MLIR-Based Compiler Flow for System-Level Design and



High-level Synthesis for Domain Specific Computing ISPD ’23, March 26–29, 2023, Virtual Event, USA

Hardware Acceleration. In Proceedings of the 41st IEEE/ACM International Con-
ference on Computer-Aided Design (San Diego, California) (ICCAD ’22). As-
sociation for Computing Machinery, New York, NY, USA, Article 6, 9 pages.
https://doi.org/10.1145/3508352.3549424

[2] Torch-MLIR Authors. 2022. Torch-MLIR. https://github.com/llvm/torch-mlir.
[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018.
TVM: End-to-End Optimization Stack for Deep Learning. CoRR abs/1802.04799
(2018). arXiv:1802.04799 http://arxiv.org/abs/1802.04799

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan
Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018.
TVM: End-to-End Optimization Stack for Deep Learning. CoRR abs/1802.04799
(2018). arXiv:1802.04799 http://arxiv.org/abs/1802.04799

[5] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with
Optimized Dataflow Architecture. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1–8. https://doi.org/10.1145/3240765.3240850

[6] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-
chong Zhang. 2018. Understanding Performance Differences of FPGAs and GPUs.
In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 93–96. https://doi.org/10.1109/FCCM.2018.00023

[7] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang. 2016.
Software Infrastructure for Enabling FPGA-Based Accelerations in Data Cen-
ters: Invited Paper. In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design (San Francisco Airport, CA, USA) (ISLPED ’16).
Association for Computing Machinery, New York, NY, USA, 154–155. https:
//doi.org/10.1145/2934583.2953984

[8] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. 1991. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 4 (1991), 451–490.

[9] Adel Ejjeh, Leon Medvinsky, Aaron Councilman, Hemang Nehra, Suraj Sharma,
Vikram Adve, Luigi Nardi, Eriko Nurvitadhi, and Rob A Rutenbar. 2022.
HPVM2FPGA: Enabling true hardware-agnostic FPGA programming. In 2022
IEEE 33rd International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 1–10.

[10] Charles Gilbert and Mariano Sigman. 2007. Brain States: Top-Down Influences
in Sensory Processing. Neuron 54 (2007), 677–696.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[13] Sitao Huang et al. 2021. Pylog: An algorithm-centric python-based FPGA pro-
gramming and synthesis flow. IEEE Trans. Comput. 70, 12 (2021), 2015–2028.

[14] Xilinx Inc. 2020. Vivado High-Level Synthesis User Guide UG902 (v2020.1).
[15] Xilinx Inc. 2022. Vitis High-Level Synthesis User Guide UG1399 (v2022.1).
[16] Intel. 2023. Intel High Level Synthesis Compiler. https://www.intel.com/content/

www/us/en/software/programmable/quartus-prime/hls-compiler.html.
[17] Hyegang Jun, Hanchen Ye, Hyunmin Jeong, and Deming Chen. 2022. Au-

toScaleDSE: A Scalable Design Space Exploration Engine for High-Level Syn-
thesis. ACM Transactions on Reconfigurable Technology and Systems (TRETS)
(2022).

[18] Khronos. 2023. OPEN STANDARD FOR PARALLEL PROGRAMMING OF HET-
EROGENEOUS SYSTEMS. https://www.khronos.org/opencl/.

[19] Maria Kotsifakou, Prakalp Srivastava, Matthew D Sinclair, Rakesh Komuravelli,
Vikram Adve, and Sarita Adve. 2018. Hpvm: Heterogeneous parallel virtual
machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 68–80.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[21] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming Infras-
tructure for Software-Defined Reconfigurable Computing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery, New York,
NY, USA, 242–251. https://doi.org/10.1145/3289602.3293910

[22] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle,
Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr
Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s Law.
arXiv preprint arXiv:2002.11054 (2020).

[23] Seung-Hee Lee and Yang Dan. 2012. Neuromodulation of Brain States. Neuron
76 (2012), 209–222.

[24] David Luebke. 2008. CUDA: Scalable parallel programming for high-performance
scientific computing. In 2008 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. 836–838. https://doi.org/10.1109/ISBI.2008.4541126

[25] Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi,
Sai Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh Rafatirad.
2019. Pyramid: Machine Learning Framework to Estimate the Optimal Timing
and Resource Usage of a High-Level Synthesis Design. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 397–403.

[26] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. 2018. VTA: an open hardware-software stack for deep
learning. arXiv preprint arXiv:1807.04188 (2018).

[27] William S Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021.
Polygeist: Raising C to Polyhedral MLIR. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 45–59.

[28] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
Accelerator Design with Time-Sensitive Affine Types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 393–407. https://doi.org/10.1145/3385412.3385974

[29] Kenneth O’Neal, Mitch Liu, Hans Tang, Amin Kalantar, Kennen DeRenard, and
Philip Brisk. 2018. Hlspredict: Cross platform performance prediction for fpga
high-level synthesis. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 1–8.

[30] Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Deming Chen,
Jason Cong, and Wen-Mei W. Hwu. 2009. FCUDA: Enabling efficient compilation
of CUDA kernels onto FPGAs. In 2009 IEEE 7th Symposium on Application Specific
Processors. 35–42. https://doi.org/10.1109/SASP.2009.5226333

[31] Alexandros Papakonstantinou, Yun Liang, John A Stratton, Karthik Gururaj,
Deming Chen, Wen-Mei W Hwu, and Jason Cong. 2011. Multilevel granularity
parallelism synthesis on FPGAs. In 2011 IEEE 19th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines. IEEE, 178–185.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems. 8026–8037.

[33] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench 437 (2012), 1–1.

[34] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized
architectures. In 2014 IEEE International Symposium onWorkload Characterization
(IISWC). 110–119. https://doi.org/10.1109/IISWC.2014.6983050

[35] Benjamin Carrion Schafer and Zi Wang. 2020. High-Level Synthesis Design
Space Exploration: Past, Present, and Future. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 10 (2020), 2628–2639. https:
//doi.org/10.1109/TCAD.2019.2943570

[36] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[37] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2022. ScaleHLS: A New Scalable High-Level
Synthesis Framework on Multi-Level Intermediate Representation. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 741–755.

[38] Hanchen Ye, Cong Hao, Hyunmin Jeong, Jack Huang, and Deming Chen. 2021.
ScaleHLS: Achieving scalable high-level synthesis through MLIR. In Proceed-
ings of the Workshop on Languages, Tools, and Techniques for Accelerator Design
(LATTE’21).

[39] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendorffer, and Deming
Chen. 2022. ScaleHLS: a scalable high-level synthesis framework with multi-level
transformations and optimizations. In Proceedings of the 59th ACM/IEEE Design
Automation Conference. 1355–1358.

[40] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng
He. 2017. COMBA: A comprehensive model-based analysis framework for high
level synthesis of real applications. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 430–437.

[41] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail Niar. 2016.
Lin-analyzer: a high-level performance analysis tool for FPGA-based accelerators.
In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[42] Wei Zuo, Warren Kemmerer, Jong Bin Lim, Louis-Noël Pouchet, Andrey Ayupov,
Taemin Kim, Kyungtae Han, and Deming Chen. 2015. A polyhedral-based Sys-
temC modeling and generation framework for effective low-power design space
exploration. In 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 357–364.

[43] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. 2013.
Improving high level synthesis optimization opportunity through polyhedral
transformations. In Proceedings of the ACM/SIGDA international symposium on
Field programmable gate arrays. 9–18.

[44] Wei Zuo, Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Chung-Wei Lin,
Shinichi Shiraishi, and Deming Chen. 2017. Accurate high-level modeling and au-
tomated hardware/software co-design for effective SoC design space exploration.
In Proceedings of the 54th Annual Design Automation Conference 2017. 1–6.

https://doi.org/10.1145/3508352.3549424
https://github.com/llvm/torch-mlir
https://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
https://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
https://doi.org/10.1145/3240765.3240850
https://doi.org/10.1109/FCCM.2018.00023
https://doi.org/10.1145/2934583.2953984
https://doi.org/10.1145/2934583.2953984
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.khronos.org/opencl/
https://doi.org/10.1145/3289602.3293910
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1109/SASP.2009.5226333
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1109/TCAD.2019.2943570

	Abstract
	1 Introduction
	2 Background
	2.1 Domain-Specific Programming Languages
	2.2 HLS Compilation

	3 Multi-Level HLS Compilation
	3.1 Motivation
	3.2 ScaleHLS Compiler

	4 Design Space Exploration
	4.1 Motivation
	4.2 AutoScaleDSE Explorer

	5 Pattern-Driven Design Optimization
	5.1 Motivation
	5.2 PyTransform Customizer

	6 Future Works
	7 Conclusion
	Acknowledgments
	References

