ScaleHLS-HIDA: From PyTorch/C++ to Highly-optimized HLS Accelerators and

Xcelo[™]: A New HLS Tool with Full Automation

Hanchen Ye^{1,2}, Junhao Pan^{1,2}, Deming Chen^{1,2} ¹University of Illinois Urbana-Champaign ²Inspirit IoT, Inc

Tutorial Information

- Github Repository: https://github.com/UIUC-ChenLab/ScaleHLS-HIDA
- ScaleHLS Paper (HPCA'22): <u>https://arxiv.org/abs/2107.11673</u>
- HIDA Paper (ASPLOS'24): <u>https://arxiv.org/abs/2311.03379</u>
- Other Related Papers: DAC'22, DAC'23, TRETS'23, ISPD'23
- Contact:
 - Hanchen Ye (<u>hanchen8@illinois.edu</u> or <u>hanchen.ye@inspirit-iot.com</u>)
 - Junhao Pan (jpan22@illinois.edu or junhao.pan@inspirit-iot.com)
 - Deming Chen (<u>dchen@illinois.edu</u> or <u>deming.chen@inspirit-iot.com</u>)

Tutorial Outline

- Background
- Motivation
- ScaleHLS: A Scalable High-level Synthesis Framework on MLIR
 - Multi-level HLS IR and Optimization
 - Single-kernel Design Space Exploration (DSE)
 - Single-kernel DSE Demo and Walkthrough
- HIDA: A Dataflow Compiler for High-level Synthesis
 - Dataflow IR and Optimization
 - Multi-kernel Dataflow-aware DSE
 - HIDA for Versal ACAP
- Xcelo[™]: A New HLS Tool with Full Automation

Section 1: Background

Computational cost of DNNs is growing

Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]

Model size of language models is growing exponentially

[•] TinyML and Efficient Deep Learning Computing [Han, 2023]

Need for domain-specific accelerators

• A New Golden Age for Computer Architecture [Hennessy et al., IEEE 2020]

Design Productivity and Quality Gap

Design Productivity Gap

- Increasing complexity of designs
- Reduced time-to-market
- Verification/Predictability Gap
 - Delayed final tapeout
- Quality Gap
 - RTL focusing on limited architecture alternatives

Source: Semico Research Corp.

Source: Pittsburgh Digital Greenhouse

Need for High-level Synthesis Methodology

Platform	Normalized Speed-Up	Normalized Performance/ Watt	Development Time in Days
FPGA	545:1 🔶	1090:1 🔺	60
GPU	50:1	21:1	3
GPP	1:1	1:1	1 🖊

Performance

Source: Khaled Benkrid, HEART'2010

High-level Synthesis (HLS)

RTL Design Flow

- Manual optimization and scheduling
- Long design cycle
- Low portability against different PDK or PPA requirements

Automated optimization and scheduling

HLS Design Flow

- Short design cycle
- **High** portability against different PDK or PPA requirements

• PDK: Process design kit.

Need for Higher-level Transformation

Overview of the Proposed Toolchain

HIDA: A Dataflow Compiler for High-level Synthesis (Section 6, 7, 8)

ScaleHLS: A Scalable High-level Synthesis Framework on Multi-level Intermediate Representation (MLIR) (Section 3, 4, 5)

Xcelo[™]: A New HLS Tool with Full Automation (Section 9)

Section 2: Motivation

Motivation

Motivation (Cont.)

Motivation (Cont.)

Motivation (Cont.)

Difficulties:

- Low-productive and error-proning
- Hard to enable automated design space exploration (DSE)
- NOT scalable!

Solve problems at the 'correct' level AND automate it

MLIR

Approaches of ScaleHLS:

- Represent HLS designs at multiple levels of abstractions
- Make the *multi-level* optimizations automated and parameterized
- Enable an automated DSE
- End-to-end high-level analysis and optimization flow

From LLVM to MLIR

- More and more programming languages demand customized IR for optimization.
- The IR for different languages have different abstraction level.
- Language-specific IR can be lowered to LLVM for back-end code generation.

Source: MLIR: Multi-Level Intermediate Representation Compiler Infrastructure, C. Lattner.

- Different back-ends demand customized IR for optimization
- DSAs (Domain-Specific Accelerator) even cannot use LLVM for generating back-end codes and demand their own IR for code generation

Severe Fragmentation: IRs have different implementations and "frameworks"

MLIR: "Meta IR" and Compiler Infrastructure

MLIR is a "**Meta IR**" and **compiler infrastructure** for:

- Design and implement dialect
- Optimization and transform inside of a **dialect**
- Conversion between different dialects
- Code generation of dialect

Section 3: Multi-level HLS IR and Optimization

ScaleHLS Framework: Overview

ScaleHLS Framework: Integration

Inputs

[1] Polygeist: https://github.com/wsmoses/Polygeist

[2] Torch-MLIR: https://github.com/llvm/torch-mlir

[3] CIRCT: https://github.com/llvm/circt

ScaleHLS Framework: Representation

ScaleHLS Framework: Representation (Cont'd)

ScaleHLS Framework: Optimization

ScaleHLS Optimizations

	Passes	Target	Parameters
Graph	-legalize-dataflow	function	insert-copy
	-split-function	function	min-gran
Loop	-affine-loop-perfectization	loop band	-
	-affine-loop-order-opt	loop band	perm-map
	-remove-variable-bound	loop band	-
	-affine-loop-tile	loop	tile-size
	-affine-loop-unroll	loop	unroll-factor
Direct.	-loop-pipelining	loop	target-ii
	-func-pipelining	function	target-ii
	-array-partition	function	part-factors
Misc.	-simplify-affine-if -affine-store-forward -simplify-memref-access -canonicalize -cse	function function function function	

Boldface ones are new passes provided by us, while others are MLIR built-in passes.

Loop and

Directive

Opt in MLIR

```
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
  for (int i = 0; i < 32; i++) {
    for (int j = 0; j <= i; j++) {
        C[i][j] *= beta;
        for (int k = 0; k < 32; k++) {
            C[i][j] += alpha * A[i][k] * A[j][k];
    } } }
    Baseline C</pre>
```

```
void syrk(int alpha, int beta, int C[32][32], int A[32][32]) {
#pragma HLS interface s_axilite port=return bundle=ctrl
#pragma HLS interface s_axilite port=alpha bundle=ctrl
#pragma HLS interface s_axilite port=beta bundle=ctrl
#pragma HLS interface bram port=C
#pragma HLS interface bram port=A
#pragma HLS resource variable=C core=ram_s2p_bram
#pragma HLS array_partition variable=A cyclic factor=2 dim=2
#pragma HLS resource variable=A core=ram_s2p_bram
  for (int k = 0; k < 32; k += 2) {
    for (int i = 0; i < 32; i += 1) {</pre>
      for (int j = 0; j < 32; j += 1) {
\#pragma HLS pipeline II = 3
        if ((i - j) >= 0) {
          int v7 = C[i][j];
          int v8 = beta * v7;
          int v9 = A[i][k];
          int v10 = A[j][k];
          int v11 = (k == 0) ? v8 : v7;
          int v12 = alpha * v9;
          int v13 = v12 * v10;
          int v14 = v11 + v13;
          int v15 = A[i][(k + 1)];
          int v16 = A[j][(k + 1)];
          int v17 = alpha * v15;
          int v18 = v17 * v16:
                                                Optimized C
          int v19 = v14 + v18:
                                               emitted by the
          C[i][i] = v19;
} } } }
                                               C/C++ emitter
```

Loop Order Permutation

• The minimum *II* (Initiation Interval) of a loop pipeline can be calculated as:

 $II_{min} = \max_{d} \left(\left\lceil \frac{Delay_d}{Distance_d} \right\rceil \right)$

- *Delay_d* and *Distance_d* are the scheduling delay and distance (calculated from the dependency vector) of each loop-carried dependency *d*.
- To achieve a smaller *II*, the loop order permutation pass performs affine analysis and attempt to permute loops associated with loop-carried dependencies in order to maximize the *Distance*.

Loop Pipelining

- Apply loop pipelining directives to a loop and set a targeted initiation interval.
- In the IR of ScaleHLS, directives are represented using the HLSCpp dialect. In the example, the pipelined %j loop is represented as:

```
affine.for %j = 0 to 32 {
    ... ...
} attributes {loop_directive = #hlscpp.ld<pipeline=1,
targetII=3, dataflow=0, flatten=0, ... ... >}
```


Array Partition

- Array partition is one of the most important directives because the memories requires enough bandwidth to comply with the computation parallelism.
- The array partition pass analyzes the accessing pattern of each array and automatically select suitable partition fashion and factor.
- In the example, the %A array is accessed at address
 [i,k] and [i,k+1] simultaneously after pipelined, thus %A array is cyclically partitioned with two.

Transform and Analysis Library

- Apart from the optimizations, ScaleHLS provides a QoR estimator based on an ALAP scheduling algorithm. The memory ports are considered as non-shareable resources and constrained in the scheduling.
- The interfaces of all optimization passes and the QoR estimator are packaged into a library, which can be called by the DSE engine to generate and evaluate design points.

Single-kernel Design Space Exploration (DSE)

Intra-node Design Space Exploration

Pareto frontier of a GEMM kernel

- Latency and area are profiled for each design point
- Dark blue points are Pareto points
- Loop perfectization, loop order permutation, loop tiling, loop pipelining, and array partition passes are involved
- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

Intra-node Design Space Exploration (Cont.)

DSE algorithm:

1. Sample the whole design space and evaluate each sampled design point with the QoR estimator

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

Intra-node Design Space Exploration (Cont.)

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

Intra-node Design Space Exploration (Cont.)

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points
- 3. Evaluate the closest neighbor of a randomly selected design point in the current Pareto frontier

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance
Intra-node Design Space Exploration (Cont.)

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points
- 3. Evaluate the closest neighbor of a randomly selected design point in the current Pareto frontier
- 4. Repeat step (2) and (3) to update the discovered Pareto frontier

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

Intra-node Design Space Exploration (Cont.)

DSE algorithm:

- 1. Sample the whole design space and evaluate each sampled design point with the QoR estimator
- 2. Extract the Pareto frontier from all evaluated design points
- 3. Evaluate the closest neighbor of a randomly selected design point in the current Pareto frontier
- 4. Repeat step (2) and (3) to update the discovered Pareto frontier
- 5. Stop when no eligible neighbor can be found or meeting the early-termination criteria

Given the **Transform and Analysis Library** provided by ScaleHLS, the DSE engine can be extended to support other optimization algorithms in the future.

- Each parameter of a pass becomes one dimension, the original 4-dimensional design space is reduced to two dimensions through PCA
- Pareto points are located at a corner of the design space, the variance of Pareto points is much smaller than the overall variance

Single-Kernel DSE Results

Kernel	Prob. Size	Speedup	LP	RVB	Perm. Map	Tiling Sizes	Pipeline II	Array Partition
BICG	4096	41.7×	No	No	[1, 0]	[16, 8]	43	<i>A</i> :[8, 16], <i>s</i> :[16], <i>q</i> :[8], <i>p</i> :[16], <i>r</i> :[8]
GEMM	4096	768.1×	Yes	No	[1, 2, 0]	[8, 1, 16]	3	<i>C</i> :[1, 16], <i>A</i> :[1, 8], <i>B</i> :[8, 16]
GESUMMV	4096	199.1×	Yes	No	[1, 0]	[8, 16]	9	<i>A</i> :[16, 8], <i>B</i> :[16, 8], <i>tmp</i> :[16], <i>x</i> :[8], <i>y</i> :[16]
SYR2K	4096	384.0×	Yes	Yes	[1, 2, 0]	[8, 4, 4]	8	C:[4, 4], A:[4, 8], B:[4, 8]
SYRK	4096	384.1×	Yes	Yes	[1, 2, 0]	[64, 1, 1]	3	C:[1, 1], A:[1, 64]
TRMM	4096	590.9×	Yes	Yes	[1, 2, 0]	[4, 4, 32]	13	A:[4, 4], B:[4, 32]

DSE results of PolyBench-C computation kernels

- 1. The target platform is Xilinx XC7Z020 FPGA, which is an edge FPGA with 4.9 Mb memories, 220 DSPs, and 53,200 LUTs. The data types of all kernels are single-precision floating-points.
- 2. Among all six benchmarks, a **speedup** ranging from 41.7× to 768.1× is obtained compared to the baseline design, which is the original computation kernel from PolyBench-C without the optimization of DSE.
- 3. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively.
- 4. In the Loop Order Optimization (**Perm. Map**), the *i*-th loop in the loop nest is permuted to location *PermMap* [*i*], where locations are from the outermost loop to inner.

Single-Kernel DSE Results (Cont.)

Scalability study of computation kernels

- 1. The problem sizes of computation kernels are scaled from 32 to 4096 and the DSE engine is launched to search for the optimal solutions under each problem size.
- 2. For BICG, GEMM, SYR2K, and SYRK benchmarks, the DSE engine can achieve stable speedup under all problem sizes.
- 3. For GESUMMV and TRMM, the speedups are limited by the small problem sizes.

Section 5: Single-kernel DSE Demo and Walkthrough

PolyBench SYRK Benchmark DSE Demo

```
void syrk(
  float alpha.
  float beta.
  float C[N][N],
  float A[N][M]) {
#pragma scop
  for (int i = 0; i < N; i++) {</pre>
    for (int j = 0; j <= i; j++) {</pre>
      C[i][i] *= beta:
      for (int k = 0; k < M; k++) {
        C[i][j] += alpha * A[i][k] * A[j][k];
#pragma endscop
```

SYRK Kernel

```
$ cgeist syrk.c \
    -function=syrk -S \
    -memref-fullrank \
    -raise-scf-to-affine |\
    scalehls-opt \
    -debug-only=scalehls \
    -scalehls-dse-pipeline=
    "top-func=syrk target-spec=./config.json" |\
    scalehls-translate \
    -scalehls-emit-hlscpp
```

```
-emit-vitis-directives=true \
```

```
> syrk-opt.cpp
```

ScaleHLS Optimization Pipeline

DSE Walkthrough: Kernel Modification

SYRK DSE Walkthrough: Add Configuration File

```
"__output_num": "The number of output designs",
   "output num": 1.
    "__max_init_parallel": "The maximum loop parallelism in the initial sampling",
   "max_init_parallel": 32.
   "__max_expl_parallel": "The maximum loop parallelism in the exploration",
   "max_expl_parallel": 128,
   "__max_loop_parallel": "The maximum unroll factor of each loop",
   "max_loop_parallel": 16,
   "__max_iter_num": "The maximum iteration number in the exploration",
   "max_iter_num": 30,
   "__max_distance": "The maximum distance when searching for neighbor design points",
   "max_distance": 3.0,
   "__directive_only": "Only enable directive optimizations",
   "directive_only": false,
   "__resource_constr": "Enable resource constraints",
   "resource_constr": true,
(to be continued)
```

SYRK DSE Walkthrough: Add Configuration File (Cont.)

Target Platform Configuration

SYRK DSE Walkthrough: Compilation

```
$ cgeist syrk.c \
    -function=syrk -S \setminus
                                                                    Polygeist: Parse C into
    -memref-fullrank \
                                                                            MLIR
    -raise-scf-to-affine |\
  scalehls-opt \
    -debug-only=scalehls \
                                                                        ScaleHLS DSE
    -scalehls-dse-pipeline=
      "top-func=syrk target-spec=./config.json" |\
  scalehls-translate \
    -scalehls-emit-hlscpp
                                                                     C++ Code Emission
    -emit-vitis-directives=true \
    > syrk_opt.cpp
```

ScaleHLS Optimization Pipeline

Section 6: Dataflow IR and Optimization

Recap: Limitations of ScaleHLS DSE

Recap: Limitations of ScaleHLS DSE (Cont.)

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

Inter-kernel Correlation

- Node0 is connected to Node2 through buffer A
 - If buffer A is on-chip, the partition strategy of A is HIGHLY correlated with the parallel strategies of both Node0 and Node2
- Node1 is connected to Node2 through buffer B
 - Same as above

Connectedness

Intensity

- Node0, 1, and 2 have different trip count: 32*16, 16*16, and 16*16*16
 - To enable efficient pipeline execution of Node0, 1, and 2, their latencies after parallelization should be similar

Simply merging the local Pareto curves will not work well!

Motivation: Designing dataflow architecture is hard! (Cont.)

Manual LeNet Accelerator Design

- Dataflow designs are Paretodominating
- Dataflow cannot guarantee a good trade-off
- Dataflow design space is difficult to comprehend
- Automated tool outperforms exhaustive search

	Expert	Exhaustive	HIDA
Resource Util.	95.5%	99.2%	95.0%
Throu. (Imgs/s)	41.6k	49.9k	53.2k
Develop Cycle	40 hours	210 hours	9.9 mins

Productivity Performance Scalability

Dataflow IR

Two-level dataflow representation

- Functional dataflow
 - Capture high-level dataflow characteristics
 - Efficient dataflow manipulation
- Structural dataflow
 - Capture low-level micro-architectures
 - Efficient scheduling and parallelization

Dataflow IR: Functional Dataflow

%tensor = hida.task() : tensor<64x64xi8> { ... }
hida.task() { ... %tensor ... }

Functional Dataflow

- Hierarchical structure
 - Support multiple levels of dataflow
 - Inside of Task6, the tile load, computation, and store are further dataflowed
- Transparent from above
 - All tasks share the same global context
 - Support efficient task fusion and splitting

Dataflow IR: Structural Dataflow

%buffer = hida.buffer : memref<64x64xi8, ...>
hida.node() -> (%buffer : memref<64x64xi8, ...>) { ... }
hida.node(%buffer : memref<64x64xi8, ...>) -> () { ... }

Structural Dataflow

- Explicit buffer representation
 - Support both memory-mapped and stream buffers
- Isolated from above
 - Each node has its own context
 - Decouple inter-node and intra-node dataflow optimization

Dataflow IR: Structural Dataflow (Cont.)

* buffer, stream, and node operation syntax in structural dataflow. RO and RW denote read-only and read-write.

- Multi-stage buffer representation
 - Support complicated schedulings, e.g., multi-line buffer
- Affine-based partition, tiling, and vectorization representation
 - Support automatic buffer optimization upon affine analyses
- Explicit buffer memory effect representation
 - Avoid unnecessary inter-node analysis

Dataflow IR: Integration with MLIR Dialects

Section 7: Multi-kernel Dataflow-aware DSE

Multi-kernel Dataflow-aware DSE

Step (1) Connectedness Analysis

Source	Targat	Buffor	Permuta	tion Map	Scaling Map		
Source	Target	Duilei	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	A	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	$[\emptyset, 1, 0]$	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

• Permutation Map

• Record the alignment between loops

Step (1) Connectedness Analysis

Source	Targat	Buffer	Permuta	tion Map	Scaling Map		
Source	Target		S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	$[0, \emptyset, 1]$	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	[Ø, 1, 0]	[2, 1]	[1, 1]	$[\emptyset, 1, 1]$	

• Permutation Map

• Record the alignment between loops

Scaling Map

• Record the alignment between strides

Affine Analysis-based

• Demand preprocessing: Loop normalize and perfectize, memory canonicalize

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][i] = \dots; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

Step (2) Node Sorting

Node	Connectedness	Intensity
Node0	1	512
Node1	1	256
Node2	2	4096

• Descending Order of Connectedness

• Higher-connectedness node will affect more nodes

Intensity as Tie-breaker

- Higher-intensity nodes are more computationally complex, being more sensitive to optimization
- Order: Node2 -> Node0 -> Node1

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)
    NODE1_J: for (int i=0; i<16; i++)
8
      B[k][j] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
 - Overall parallel factor is 32
 - Local DSE without constraints
 - Solution unroll factors: [4, 8, 1]

Source	Target	Buffor	Permutat	tion Map	Scaling Map		
	Target	Duner	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	[0, Ø, 1]	[0, 2]	[0.5, 1]	$[2, \emptyset, 1]$	
Node1	Node2	B	[Ø, 1, 0]	[2, 1]	[1, 1]	[0, 1, 1]	

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
- Node0 Parallelization: [4, 1]
 - Overall parallel factor is 4, calculated from intensities of Node0 and 2 (32*512/4096)
 - Local DSE with connectedness constraints, the unroll factors must NOT be mutually indivisible with constraints
 - Multiply with scaling map:
 - [4, 8, 1] [2, ∅, 1] = [8, ∅, 1]
 - Permute with permutation map:
 - permute([8, ∅, 1], [0, 2]) = [8, 1]
 - Solution unroll factors: [4, 1]

Source	Targat	Buffor	Permutat	tion Map	Scaling Map		
	larget	Duiter	S-to-T	T-to-S	S-to-T	T-to-S	
Node0	Node2	А	[0, Ø, 1]	[0, 2]	[0.5, 1]	[2, Ø, 1]	
Node1	Node2	В	[Ø, 1, 0]	[2, 1]	[1, 1]	[Ø, 1, 1]	

- Assuming maximum parallel factor is 32
- Node2 Parallelization: [4, 8, 1]
- Node0 Parallelization: [4, 1]
- Node1 Parallelization: [1, 2]
 - Overall parallel factor is 2, calculated from intensities of Node0 and 1 (32*256/4096)
 - Local DSE with connectedness constraints
 - Solution unroll factors: [1, 2]

```
1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)</pre>
    NODE0_K: for (int k=0; k<16; k++)
3
      A[i][k] = ...; // Load array A.
4
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)</pre>
    NODE1_J: for (int j=0; j<16; j++)
8
      B[k][i] = ...; // Load array B.
9
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
    NODE2_J: for (int j=0; j<16; j++)
13
      NODE2_K: for (int k=0; k<16; k++)
14
        C[i][j] = A[i*2][k] * B[k][j];
15
```


ResNet-18 Ablation Study on HIDA

ResNet-18 Ablation Study on HIDA (Cont.)

Dataflow-aware Results on DNN Models

	HIDA	LUT	LUT DSP 1mber Number	Tł	nroughput (San	nples/s)*	DSP Efficiency*			
Model	Model Compile Number Time (s)	Number		HIDA	DNNBuilder [75]	ScaleHLS [68]	HIDA	DNNBuilder [75]	ScaleHLS [68]	
ResNet-18	83.1	142.1k	667	45.4	-1	3.3 (13.88×)	73.8%	-	5.2% (14.24×)	
MobileNet	110.8	132.9k	518	137.4	-	15.4 (8.90×)	75.5%	-	9.6% (7.88×)	
ZFNet	116.2	103.8k	639	90.4	112.2 (0.81×)	-	82.8%	79.7% (1.04×)	-	
VGG-16	199.9	266.2k	1118	48.3	27.7 (1.74×)	6.9 (6.99×)	102.1%	96.2% (1.06×)	18.6% (5.49×)	
YOLO	188.2	202.8k	904	33.7	22.1 (1.52×)	_	94.3%	86.0% (1.10×)	-	
MLP	40.9	21.0k	164	938.9	-	152.6 (6.15×)	90.0%	-	17.6% (5.10×)	
Geo. Mean	108.7				1.29 ×	8.54×		1.0 7×	7.49×	

* Numbers in () show throughput/DSP efficiency improvements of HIDA over others.

PyTorch Model Compilation

Torch-MLIR: Parse PyTorch into MLIR HIDA DSE C++ Code Emission

PyTorch Optimization Pipeline

Section 8: HIDA for Versal ACAP

Keep Data on Chip!

Source: CHARM: Composing Heterogeneous Accelerators for Matrix Multiply on Versal ACAP Architecture

Automated Stream Inference and Implementation

Acknowledgement

- We acknowledge all co-authors of the ScaleHLS paper: Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, and Stephen Neuendorffer.
- We acknowledge co-author of the HIDA paper: Hyegang Jun.
- This project is supported in part by AMD Center of Excellence at UIUC, AMD Heterogeneous Adaptive Compute Cluster (HACC) initiative, BAH HT 15-1158 contract, NSF 2117997 grant through the A3D3 institute, and Semiconductor Research Corporation (SRC) 2023-CT-3175 grant.

Tutorial Information

- Github Repository: https://github.com/UIUC-ChenLab/ScaleHLS-HIDA
- ScaleHLS Paper (HPCA'22): <u>https://arxiv.org/abs/2107.11673</u>
- HIDA Paper (ASPLOS'24): <u>https://arxiv.org/abs/2311.03379</u>
- Other Related Papers: DAC'22, DAC'23, TRETS'23, ISPD'23
- Contact:
 - Hanchen Ye (<u>hanchen8@illinois.edu</u> or <u>hanchen.ye@inspirit-iot.com</u>)
 - Junhao Pan (jpan22@illinois.edu or junhao.pan@inspirit-iot.com)
 - Deming Chen (<u>dchen@illinois.edu</u> or <u>deming.chen@inspirit-iot.com</u>)
Section 9: Xcelo[™]: A New HLS Tool with Full Automation