

Google







Hanchen Ye<sup>1</sup>, <u>David Z. Pan<sup>24</sup></u>, Chris Leary<sup>3</sup>, Deming Chen<sup>1</sup>, and Xiaoqing Xu<sup>4</sup>

<sup>1</sup>University of Illinois at Urbana-Champaign; <sup>2</sup>University of Texas at Austin; <sup>3</sup>Google; <sup>4</sup>X, the moonshot factory





- Intuition: Accurate feedback => less LP constraints => larger design space => better scheduling results.

## **Subgraph Extraction Strategy**



reducing register usage.

## Window-based vs. Cone-based vs. Path-based

Window is derived by merging multiple cones that have different roots but share an identical or overlapping set of leaves.

50%

**Capture more inter-node** optimizations

Fanout-driven path extraction vs. Delay-driven path extraction

- Settings: 4/8/16 delay-driven (dash)/fanout-driven (solid) paths per iteration
- After 30 iterations, fanout-driven strategy reduces register number to 509 (-37.9%)



(Fanout-driven) Path extraction vs. Cone extraction vs. Window extraction

- Settings: 4/8/16 fanout-driven path (dash)/cone (dot)/window (solid) per iteration
- After 30 iterations, window-based strategy reduces register number to 474 (-42.1%)

## **Evaluation Results on 17 XLS Designs**

XLS [1] (SDC Scheduling) Clock

**Ours (Iterative SDC Scheduling)** 

original\_estimation

38.4%

3.4%

our\_estimation



[1] The XLS Authors, "XLS: Accelerated HW synthesis," https://github.com/google/xls. [2] J. Cong et al., "An efficient and versatile scheduling algorithm based on SDC formulation," in Proc. of DAC, 2006.