

Ph.D. Forum @ DAC ILLINOIS

ScaleHLS: A Scalable High-Level Synthesis Framework

Hanchen Ye, Deming Chen UIUC (University of Illinois at Urbana-Champaign)

Challenges and Motivation

HLS (High-Level Synthesis) has a great potential to continue to drive the high-productivity designs of circuits with high-density, high-energy efficiency, and short design cycle. However, there still exhibits significant challenges on handling large-scale HLS design:

- **Representation:** Software-oriented intermediate representation (IR) is difficult to carry effective HLS optimizations
- **Optimization:** HLS optimizations highly relies on manual code rewriting, including directive, loop, and graph optimizations
- **Exploration:** Vast and complicated design space to explore

Marry HLS and MLIR

- Abstract HLS designs into multiple representation levels
- Solve the HLS optimization problems at "correct" abstraction levels
- Enable comprehensive design space exploration for optimal solutions

Large MLIR **Community:**

Microsoft Google

... ...

ScaleHLS - HPCA'22, LATTE'21

- **Functional Dataflow**: High-level IR without hardware details for fast dataflow construction and task partition
- Structural Dataflow: Low-level IR with hardware details, such as the communication between dataflow nodes, for comprehensive dataflow scheduling, optimization, and design space exploration

ML-augmented HLS Design Space Exploration

- Random forest-based qualityof-result estimation
- 2. Evolutionary algorithm-based buffer partition

self.index_type = uflow.UInt(32)

IP compile-time params self.par_m = uflow.CompileParam(self.index_type, [2, 4, 8]) self.dim_m = uflow.DynamicParam(self.index_type, (16, 1024)) IP runtime params self.dim_n = uflow.DynamicParam(self.index_type, (16, 1024))

self.mat_a = uflow.InputPort(uflow.DynamicTensor(*IP input port "mat_a"* self.data_type, [self.dim_m, self.dim_n], Shape and layout of "mat_a" lambda m, n: [m / self.par_m, n, m % self.par_m])) self.vec_b = uflow.InputPort(uflow.DynamicTensor(self.data_type, [self.dim_n], lambda n: [n]), size=[1]) *IP output port "vec_c"* self.vec_c = uflow.OutputPort(

uflow.DynamicTensor(self.data_type, [self.dim_m], Size 1 indicates "vec_c" is FIFO lambda m: [m / self.par_m, m % self.par_m]), size=[1])

def semantics(self):

for m in self.dim m:

for n in self.dim_n:

self.vec_c[m] += self.mat_a[m, n] * self.vec_b[n]

An Example of GEMV IP Registration

IP semantics for pattern match

Traditional quality-of-result estimation

exhibits large inaccuracies

Open-Source Contribution

https://github.com/hanchenye/scalehls

35k Views and 2.9k Downloads since 2022

