
HIDA: A Hierarchical Dataflow Compiler for
High-Level Synthesis

Hanchen Ye
University of Illinois
Urbana-Champaign

United States
hanchen8@illinois.edu

Hyegang Jun
University of Illinois
Urbana-Champaign

United States
hgjun2@illinois.edu

Deming Chen
University of Illinois
Urbana-Champaign

United States
dchen@illinois.edu

Abstract
Dataflow architectures are growing in popularity due to their
potential to mitigate the challenges posed by the memory
wall inherent to the Von Neumann architecture. At the same
time, high-level synthesis (HLS) has demonstrated its efficacy
as a design methodology for generating efficient dataflow
architectures within a short development cycle. However,
existing HLS tools rely on developers to explore the vast
dataflow design space, ultimately leading to suboptimal de-
signs. This phenomenon is especially concerning as the size
of the HLS design grows. To tackle these challenges, we intro-
duce HIDA1, a new scalable and hierarchical HLS framework
that can systematically convert an algorithmic description
into a dataflow implementation on hardware. We first pro-
pose a collection of efficient and versatile dataflow repre-
sentations for modeling the hierarchical dataflow structure.
Capitalizing on these representations, we develop an auto-
mated optimizer that decomposes the dataflow optimization
problem into multiple levels based on the inherent dataflow
hierarchy. Using FPGAs as an evaluation platform, working
with a set of neural networks modeled in PyTorch, HIDA
achieves up to 8.54× higher throughput compared to the
state-of-the-art (SOTA) HLS optimization tool. Furthermore,
despite being fully automated and able to handle various ap-
plications, HIDA achieves 1.29× higher throughput over the
SOTA RTL-based neural network accelerators on an FPGA.

1 Introduction
With the decline of Moore’s law, it is no longer possible to ex-
pect the price of computation to decrease year over year. As
a result, customized and domain-specific accelerators are be-
coming well accepted in combating the physical limitations
of silicon, including those implemented on ASICs [24, 28, 40]
and reconfigurable platforms, such as FPGAs [72, 75, 84].
Historically, the cost of developing hardware accelerators
has always remained astronomically high. In this context,
high-level synthesis (HLS) is a promising solution that can
synthesize high-level algorithmic description to a hardware
description language (HDL) implementation [12].
Dataflow Architecture. An important computation ar-

chitecture for customized hardware accelerators is dataflow,

1https://github.com/UIUC-ChenLab/ScaleHLS-HIDA

which enables the parallel temporal execution of multiple
coarse-grained tasks [50, 59, 78]. Unlike the Von Neumann
architecture that constantly grapples with the memory wall,
dataflow architecture can exploit the on-chip communication
between tasks to avoid frequent external memory access. As
long as an application is dataflow feasible, a well-designed
dataflow architecture can efficiently execute the application
with reduced power and bandwidth utilization [27, 65, 67].

Existing Dataflow Approaches. Commercial HLS tools
typically provide programming interfaces for users to im-
plement dataflow structures, such as the AMD Vitis HLS
dataflow directive [34], Intel HLS system of tasks [35], and
LegUp thread APIs [36]. However, it is still difficult to im-
plement a dataflow-oriented HLS design with sequential lan-
guages, such as C/C++. Therefore, academic HLS tools have
pushed for approaches that decouple algorithm specification
from hardware customizations in compute, data types, and
memory [4, 33, 43, 68], or introduce specialized HLS primi-
tives [10, 29, 42, 49]. These approaches have effectively im-
proved productivity and quality compared to industrial HLS
tools. Note that there also exist recent frameworks [26, 70]
that can automatically generate dataflow design without
manual code rewriting. However, these automated tools can-
not systematically model dataflow architectures, limiting
them to the generation of suboptimal simple designs.

UnexploredOpportunities.Although existingHLS tools
can enable dataflow designs, they still heavily rely on the
user to make the hard design decisions, including but not
limited to parallelization strategy, tiling strategy, memory hi-
erarchy, data layout, etc. More importantly, the design spaces
of different tasks in the dataflow are tightly coupled with
each other due to two reasons: (1) an efficient dataflow archi-
tecture demands the latency to be balanced across different
tasks as the critical task determines the overall achievable
performance; (2) the inter-task communications are often
established through streaming channels or on-chip buffers in-
stead of hierarchical shared memory. Meanwhile, large-scale
dataflow often gravitates towards a hierarchical structure, as
dataflow tasks are naturally represented by nested graphs,
further complicating the design space.
As a result, the vast design space can prohibit program-

mers from reasoning about various design choices and find-
ing the optimized design point. This can eventually lead

https://orcid.org/0000-0002-6646-8146
https://orcid.org/0000-0002-7879-6884
https://orcid.org/0000-0002-3016-0270
https://github.com/UIUC-ChenLab/ScaleHLS-HIDA

to non-ideal performance and efficiency, thereby thwarting
the promise of existing dataflow approaches. We observed
that many HLS-augmentation tools have proposed DSE en-
gines using different algorithms, including polyhedral tech-
niques [1, 80, 86, 87], graph analysis [32, 71, 79, 83], and
machine learning [26, 41, 64, 73]. These tools can effectively
explore the local design space of a single task or kernel.
However, they cannot handle the dataflow-oriented explo-
ration of multiple tasks due to the inter-task coupling and
the complicated dataflow hierarchy.
HIDA Approach. With the discussion above, we con-

cluded that the challenges presented in the design and opti-
mization of dataflow architecture cannot be fully addressed
by existing HLS approaches, which rely on programmers to
explore the vast design space manually. We argue that com-
pilers will and should play an important role in the design
process - the hierarchical characteristics of dataflow archi-
tecture should be systematically represented and modeled,
on which an optimization pipeline should be built to handle
the inter- and intra-task optimizations comprehensively.

Under this mantra, we propose HIDA, an HLS framework
with hierarchical dataflow intermediate representations (IR)
and optimizations, enabling the automated transformation
of algorithmic hardware descriptions to efficient dataflow
architectures. The main contributions of HIDA are as follows:
• We propose a new dataflow IR called HIDA-IR that models
dataflow at two different levels of abstraction, Functional
and Structural, to capture the dataflow characteristics and
multi-level hierarchy, enabling effective optimizations.
• We propose a new dataflow optimizer called HIDA-OPT,
featuring a pattern-driven task fusion algorithm and an
intensity- and connection-aware dataflow parallelization
algorithm geared toward maximum efficiency.
• We enable an end-to-end and extensible compilation stack
supporting PyTorch and C++ inputs, empowering the user
to rapidly experiment with various design parameters and
prototype new dataflow architectures.
• We perform comprehensive FPGA evaluations of HIDA.
On a set of neural networks, HIDA achieves 8.54× and
1.29× higher throughputs over the SOTAHLS optimization
framework and RTL-based neural network accelerator.

2 Motivation
Due to the inherent disjoint between the Von Neumann-
centric programming model and the dataflow programming
model, it is easy for HLS designs to leave a large portion
of the achievable performance on the table. To better un-
derstand the challenges presented in existing HLS tools, we
implemented an HLS-based LeNet [47] accelerator on an
AMD PYNQ-Z2 FPGA as a case study.

Design Process. Table 1 shows the structure of the LeNet
model, which consists of 6 layers in total. We followed the
steps below to design the HLS-based accelerator:

1. We rewrote the LeNet model in C++ as the baseline design,
which is also used for the testbench and simulation in all
subsequent steps. (2 hours)

2. We applied layer fusion and parallelization to the baseline
design following the strategy summarized in Table 1. The
listed parallel factors are selected with heuristics [76] and
implemented with manual loop tiling and loop unroll
directive insertion. (10 hours)

3. We rewrote the design to enable coarse-grained dataflow
and loop pipeline. Specifically, we outlined all tasks, im-
plemented off-chip memory interfaces, and partitioned
inter-task on-chip buffers with heuristics [66]. (8 hours)

4. We iterated on different settings of parallel factors and
directive configurations by rewriting and evaluating the
design in AMD Vitis HLS until we were satisfied with the
quality of the results. (20 hours)

Overall, we spent around 40 hours designing and fine-tuning
the HLS-based LeNet accelerator. Then, we parameterized
all six parallel factors listed in Table 1 and developed a TCL
script exhaustively traversing each configuration under both
dataflow and non-dataflow settings. This took another 170
hours. Finally, as a comparison, we automatically generated
an HIDA-based design, which took 0.4 minutes to compile
and 9.5 minutes for AMD Vitis HLS to generate RTL.
Results and Analysis. Figure 1 shows the exhaustive

search results of the LeNet accelerator in the throughput-
resource space. Table 2 summarizes the evaluation results
and development cycles of the expert design, the best design
from the exhaustive search, and the HIDA design. The key
observations are summarized as follows:

• Dataflow designs are Pareto-dominating.We can clearly ob-
serve a large throughput/resource gap between the Pareto
frontiers with and without dataflow. The best dataflow
design achieves 3.13× higher throughput than the non-
dataflow counterpart under the same resource constraints.
• Dataflow cannot guarantee a good trade-off. We can ob-
serve tons of dataflow designs dominated by non-dataflow
designs. Under the same resource constraints, the best
non-dataflow design achieves 3.83× higher throughput
than the dataflow design with the worst quality.
• Dataflow design space is vast. In the layer fusion, spatial
parallelization, and array partition steps, we have pruned
a large amount of design points based on heuristics. How-
ever, the resulting design space still contains more than
2.4×104 points and costs hundreds of CPU hours to search
exhaustively, owing to the fact that each design point takes
2-10 minutes for Vitis HLS to evaluate.
• Dataflow design space is difficult to comprehend. In Table 2,
we can observe that the exhaustive design achieves 1.20×
higher throughput than the hand-tuned expert design. We
attribute this to the inter-task design space coupling. The
complicated dataflow design space makes it substantially

2

Table 1. LeNet accelerator design. CPF and KPF
denote the channel and kernel parallel factor.

Layer Task Factor Range

(All Layers) - 𝐵𝐴𝑇𝐶𝐻 {1, 5, 10, 15, 20}

Conv+ReLU
Task1 𝐾𝑃𝐹𝑡𝑎𝑠𝑘1 {1, 2, 3, 6}

Pool

Conv+ReLU
Task2 𝐾𝑃𝐹𝑡𝑎𝑠𝑘2

𝐶𝑃𝐹𝑡𝑎𝑠𝑘2

{1, 2, 4, 8, 16}
{1, 2, 3, 6}Pool

Conv+ReLU Task3 𝐾𝑃𝐹𝑡𝑎𝑠𝑘3
𝐶𝑃𝐹𝑡𝑎𝑠𝑘3

{1, 2, 3, 4, 6, 8}
{1, 2, 4, 8, 16}

Linear Task4 - -

Table 2. Evaluation results of LeNet.

Expert Exhaustive HIDA

Resource Util. 95.5% 99.2% 95.0%
Throu. (Imgs/s) 41.6k 49.9k 53.2k
Develop Cycle 40 hours 210 hours 9.9 mins

20% 40% 60% 80% 100%
Resource Utilization: max(BRAM%, DSP%, LUT%)

0k

10k

20k

30k

40k

50k

60k

Th
ro

ug
hp

ut
 (I

m
ag

es
/s

)

3.13x

3.83x

design w/ df
design w/o df
pareto w/ df
pareto w/o df
worst w/ df
expert design
hida design

Figure 1. Exhaustive design space search of the LeNet accelerator. w/ df
andw/o df indicate whether dataflow is enabled.Worst w/ df is the dataflow
design with the worst quality. Expert design is hand-tuned by HLS experts.
HIDA design is automatically generated from HIDA.

difficult to find the optimized design point by reasoning
about the trade-off empirically.
• Automated tool outperforms exhaustive search. HIDA fur-
ther improves the throughput of the exhaustive design by
1.06×. After comparing the two designs, we found HIDA
to have automatically explored additional parallelizable
dimensions apart from the six in the Factor column of
Table 1, such as the feature map width and height dimen-
sions, presenting a path that can increase the design effi-
ciency further. This indicates that using heuristics suitable
for single-task or non-dataflow designs may accidentally
prune away valuable design points for dataflow designs.

Need for Scalable Automation Tools. For the LeNet
case study, while the expert design took tens of hours to
develop and ended up with a sub-optimal design, HIDA only
took minutes to generate the design and achieved the best
quality of results. One should expect that as the complexity
and size of the target design increase, the development time
will grow dramatically, while the manual design quality will
decrease due to the vast and complicated dataflow design
space. In summary, productivity, performance, and scalabil-
ity problems of dataflow architecture are the three strong
motivators for a scalable HLS optimization tool.

3 Background
3.1 MLIR Framework
MLIR [20, 46] is a compilation framework supporting multi-
ple levels of functional and representational hierarchy. In the
remainder of this paper, we use MLIR to refer to the MLIR
framework and IR for the intermediate representation of

func @foo(%A, %B) {
 affine.for %i = 0 to 16 step 1 {
 %0 = affine.load %A[%i]
 affine.store %0, %B[%i]
 }
 return
}

func @foo(%A, %B) {
 %c0 = constant 0
 %c16 = constant 16
 %c1 = constant 1
 scf.for %i = %c0 to %c16 step %c1 {
 %0 = memref.load %A[%i]
 memref.store %0, %B[%i]
 }
 return
}

func @foo(%A, %B) {
^bb0(%A, %B):
 %c0 = constant 0
 %c16 = constant 16
 %c1 = constant 1
 br ^bb1(%c0)

^bb1(%0):
 %1 = cmpi slt, %0, %c16
 cond_br %1, ^bb2, ^bb3

^bb2:
 %2 = memref.load %A[%0]
 memref.store %2, %B[%0]
 %3 = addi %0, %c1
 br ^bb1(%3)

^bb3:
 return
}

(i) Affine

(ii) SCF (iii) unstructured

Pi➔ii: lower Affine to SCF

P i
i➔

iii
: l

ow
er

 S
C

F
to

 S
ta

nd
ar

d

Figure 2. An IR example. affine and scf dialect are struc-
tured control flow IRs that can be lowered to unstructured
IR. All types are omitted for simplicity.

programs in MLIR. MLIR includes a single static assignment
(SSA) style IR [23] where an Operation is the minimal unit
of code. Each operation accepts a set of typed Operands and
produces a set of typed Results. Connections between the re-
sults of one operation and the operands of another operation
describe the SSA-style flow of data. For instance, %3 = addi
%0, %c1 in Figure 2(iii) is an operation with operands %0 and
%c1 and result %3. Each operation can also be parameterized
by a set of Attributes indicating important characteristics
of the operation. Unlike operands, which typically model
values produced by other operations when a program is ex-
ecuted, attributes have values that are known and fixed at
compile time. A sequential list of operations without control

3

Task0
Add

.

Task3
Add

Task4
Conv.

Task5
Conv.

Task6
Conv.

Task7
Add

Dispatch0

Functional Dataflow

Task6 Conv.

Task6-0
Tile Load

Task6-1
Tile Comp.

Task6-2
Tile Store

Dispatch6-0

Task1
Conv.

Task2
Conv.

Node0
Add

.

Node3
Add

Node4
Conv.

Node5
Conv.

Node6
Conv.

Node7
Add

Schedule0

Node1
Conv.

Node2
Conv.

Structural Dataflow

Node6 Conv.

Node6-0
Tile Load

Node6-1
Tile Comp.

Node6-2
Tile Store

Schedule6-0

Da
ta

flo
w

 L
ow

er
in

g

External
Memory

Token

AXI

Node1 Conv.

Node2 Conv.

0 1 2 3 4 …

5 6 7 8 9 …

… … … … … …

0 1 2 3 4 …

5 6 7 8 9 …

… … … … … …

HIDA
PyTorch HLS C++

Torch-
MLIR Polygeist

HLS C++
Emitter

Optimized
HLS C++

Inputs Outputs

Tensor or Memory Ref. Passing Memory Accessing Streaming Memory

Vitis HLS,
etc.

Figure 3. HIDA framework overview.

Table 3.HIDA-IR key operations. Region is a sequential
list of operations to be executed.

Operation Description

Functional Dataflow

task Own a transparent region, can contain nested
dispatch operations with sub-tasks.

dispatch Launch multiple tasks in its region.

Structural Dataflow

node Own an isolated region, can contain nested
schedule operations with sub-nodes. Carry
explicit I/O memory effect information.

schedule An isolated region with multiple nodes. Carry
explicit scheduling information.

buffer Abufferwith variadic stages and ports and au-
tomatic ping-pong buffering semantics. Carry
explicit partition and layout information.

stream A stream channel with variadic entries.

Module Interface

port A memory or stream port with explicit type.
bundle A named bundle of ports.
pack Pack an external memory block into a port.

flow is defined as a Block and a control flow graph (CFG)
of blocks is organized into a Region in MLIR. Regions are,
in turn, contained by operations, enabling the description
of arbitrary design hierarchy. In MLIR, Function is defined
as a built-in callable operation always owning one region.
For instance, function @foo in Figure 2(iii) owns one region
containing four blocks, bb0 to bb3.
A Dialect in MLIR defines a namespace for a group of

related operations, attributes, and types. MLIR not only pro-
vides multiple built-in dialects to represent common func-
tionalities, but also features an open infrastructure allowing
to define new dialects at different abstraction levels. Pass is
a key component of compiler which traverses the IR for the
purpose of optimization or analysis. Similar to LLVM [44],
users can design Transform and Analysis passes in MLIR to
perform the IR transformation and analysis. However, in the
context ofMLIR, Transform typically refers to the transforma-
tion within a dialect. The transformation between different
dialects is typically referred as Conversion, while the transfor-
mation betweenMLIR and external representation is referred
as Translation. Lowering is a terminology referring to the
process of lowering the abstraction level of IR.

3.2 Relevant MLIR Dialects
Many dialects in MLIR are immediately applicable for repre-
senting nested loop programs commonly used in HLS. The
linalg dialect provides a structured representation of linear
algebra operations. The affine dialect provides a powerful
abstraction for affine operations in order tomake dependence

analysis and loop transformations efficient and reliable. The
affine dialect defines Affine Map as a mathematical func-
tion that transforms a list of affine values into a list of re-
sults. Affine operations (e.g., affine.for and if) must take
affine values as input operands, therefore the loop bounds of
affine.for operation and conditions of affine.if opera-
tion must be the expression of affine values. The scf (struc-
tured control flow) dialect defines control flow operations
(e.g., scf.for and if) whose loop bounds or conditions can
be any SSA values. Therefore, scf operations are not con-
strained by the affine requirements and can represent a wider
range of programs. MLIR also provides several fundamen-
tal built-in dialects to represent basic arithmetic operations
(e.g., addf), unstructured control flow operations (e.g., br
and cond_br), and memory-related operations (e.g., load
and store). Taking Figure 2 as an example, the structured
control flows in Figure 2(i) and (ii) represented with affine
and scf operations are flattened to the unstructured br and
cond_br operations in Figure 2(iii).

4 HIDA Overview
Figure 3 shows the overall architecture of HIDA. HIDA is
built on top of the MLIR infrastructure [20, 45] and can take
deep learning models written in PyTorch [57] or generic
HLS C++ code as design entries and produce optimized HLS
C++ code. For the PyTorch and C++ inputs, we use Torch-
MLIR [22] and Polygeist [51] as front-ends to parse source
codes. After the optimizations are completed in HIDA, we
use an HLS C++ emitter [70] to generate synthesizable HLS

4

hida.buffer {depth = 3} : memref<64x64xi8, #hida.partition<[cyclic, block], [4, 4]>, #hida.layout<[8, 8], [1, 2]>, #hida.mem<bram_t2p>>

hida.stream : hida.stream<i1, 3> hida.node(%buffer<2> : memref<...>, %stream : hida.stream<i1, 3>) -> (...) [...] { ... }

Number of Stages Buffer Shape Partition Fashions Partition Factors Tiling Factors Vectorization Factors Buffer Placement

Stream Type Number of Entries RO Arg List (Arg1 Arg1 Buffer Port Arg1 Type Arg2 Arg2 Type) RW Arg List Param List Operations

Figure 4. buffer, stream, and node operation syntax in Structural dataflow. RO and RW denote read-only and read-write.

C++ code, which can then be mapped to RTL designs with
downstream HLS tools [34–36]. HIDA proposes two new
techniques to handle the representation and optimization of
dataflow compilation, which are the key enablers to tackle
the challenges discussed in Section 2:

• Hierarchical Dataflow IR (HIDA-IR). As shown in Figure 3,
HIDA consists of Functional and Structural dataflow IR
carved for different purposes. Table 3 summarizes the key
operations of HIDA-IR. Details can be found in Section 5.
• Hierarchical Dataflow Optimizer (HIDA-OPT). HIDA de-
couples the HLS optimization problems of Functional and
Structural dataflow to handle HLS designs at scale. Details
can be found in Section 6.

5 HIDA-IR
Currently, HLS tools [70, 79, 80] employ call graphs to rep-
resent HLS structures using sequential IRs. However, due
to the lack of expressiveness for the parallel characteristics
and micro-architecture of dataflow, these IRs have limited
capability when used in scalable dataflow optimization flows.
To address this problem, we propose a holistic HIDA-IR with
two levels of representation, which we refer to as Functional
and Structural dataflow. The Functional dataflow is designed
to capture the high-level characteristics and hierarchy of
HLS designs, driving the algorithmic optimizations and task
fusion. In contrast, the Structural dataflow is a low-level ab-
straction that captures the micro-architectural details and is
optimized to handle the scheduling and parallelization.

5.1 Functional Dataflow
Hierarchical Structure. In the Functional dataflow, we in-
troduce a dispatch operation that contains the computation
graph to be dispatched. Within the dispatch operation, all
graph nodes are partitioned into multiple task operations to
represent the dispatch strategy. As accelerators often have
multiple levels of dataflow to achieve higher parallelism,
HIDA-IR supports a hierarchical structure by allowing the
recursive nesting of task and dispatch operations. Figure 3
visualizes a hierarchical Functional dataflow, where Task6
contains three sub-tasks that can be executed in a dataflow
manner to hide the latency of loads and stores, allowing us
to utilize the computational capability to a greater extent.

Transparent from Above. At the Functional level, tasks
often need to be manipulated as different dispatch strategies
can lead to different trade-offs. Based on this observation,

the dispatch and task operations are designed to be trans-
parent and share the global context, simplifying the process
of the fusing and splitting of tasks. As a result, we can effi-
ciently explore various dispatch strategies at the Functional
level. Meanwhile, thanks to the transparency, buffers and
tensors defined in the global context can be accessed by
tasks at all hierarchies without indirection. Therefore, the
Functional dataflow can enable effective algorithmic opti-
mizations for both PyTorch and C++ programs, which model
the computations at tensor and memory levels, respectively.

5.2 Structural Dataflow
Memory-Mapped and Stream Buffer. In order to pre-
cisely capture the on-chip and off-chip memory accessing
behaviors, we introduce two types of buffers at the Struc-
tural dataflow level, the memory-mapped buffer and the
stream buffer, which are represented with the buffer and
stream operations, respectively. Figure 4 shows their syntax,
where % denotes a single static assignment (SSA) value [23].
The embedded partition and data layout attributes of the
buffer operation are designed to be converted to semi-affine
maps [18], enabling polyhedral-based dependency analysis
and transformation [5] in HIDA-OPT. Notably, to facilitate
dataflow optimizations, buffer operations inherently carry
ping-pong buffering semantics, allowing buffer instances to
interleave the accesses from producers and consumers to
improve the communication efficiency. Figure 3 visualizes
the combined usage of the two types of buffers, where the
red boxes and blue arrows represent the memory-mapped
buffer and stream buffers. Dashed blue arrows denote single-
bit stream buffers. In addition to the buffers, we introduce
the port operation to represent memory-mapped or stream
interfaces, capturing the interface characteristics, such as
latency, that can have a considerable impact on the dataflow
efficiency. For instance, in Figure 3, Node0, Node1, and Node2
are scheduled to communicate through external memory,
where the AXI interfaces are modeled with port operations.

Isolated from Above. In the Structural dataflow, we in-
troduce schedule and node operation as the counterparts
of dispatch and task operation. While Structural dataflow
has a hierarchical structure similar to Functional dataflow, an
important distinction between the two is that the schedule
and node operations are isolated from the external context.
Therefore, external values must be passed into schedule and
node as arguments. In addition, the node operation carries
explicit memory effect information for each argument to

5

Structure IR Data IR Payload IR Control IR

Functional
Dataflow

Structural
Dataflow

Tensor

MemRef

Buffer +
Stream Affine +

Directive

Arithmetic

LinAlg

Affine

Arithmetic
+ Primitive

HIDA Functional Dialects HIDA Structural Dialects Existing Dialects

Lowering

H
igher Level

Low
er Level

Figure 5. Integration with MLIR dialects.

avoid unnecessary inter-node effect analysis. Figure 4 shows
the syntax of node operation, where %buffer and %stream
are passed in as read-only arguments in this specific exam-
ple. For simplicity, we omit the read-write arguments and
constant parameters in Figure 4. The rationale behind this
design decision is driven by how the Structural dataflow car-
ries the architecture optimization. By isolating the context
of schedule and node, the dataflow optimization problem
can be cleanly partitioned into multiple local intra-node op-
timizations and global inter-node optimization, leading to
a decoupled scalable solution. Details of the optimization
process is elaborated in Section 6.

5.3 Integration with MLIR Dialects
HIDA reuses a set of MLIR built-in dialects to represent the
common program components in PyTorch or C/C++. Fig-
ure 5 illustrates the integration of HIDA with the built-in
MLIR dialects. The vertical axis of Figure 5 represents the
various abstraction levels of the dialects. Horizontally, all
dialects are categorized into four different types: structure,
data, payload, and control-flow. At every abstraction level,
the corresponding four types of dialects are combined with
each other to represent the complete functionality of a pro-
gram. The Functional dataflow is first combined with tensor,
arith, and linalg dialects to represent the tensor-level pro-
grams compiled from PyTorch. Then, the tensor and linalg
dialects are lowered to memref and affine dialects, respec-
tively, while the lowered IRs are still combined with the
Functional dataflow due to its adaptability with both tensor
and memory semantics. Once the optimizations at the Func-
tional dataflow level are completed, the Functional dataflow
is lowered to the Structural dataflow, while the memref op-
erations are lowered to the Structural buffer and stream op-
erations. Note that the affine dialect is used in both the
Functional and Structural dataflows for loop analyses and
transformations. HIDA reuses the Primitive and Directive IRs
from ScaleHLS [70] to represent the HLS-specific structures,
such as the loop pipelining directive. By integrating with the

Algorithm 1 Functional dataflow construction
Require: 𝑚, top module of the initial computation graph
Ensure: Updated𝑚, top module of the Functional dataflow
1: for 𝑛 in postorder_walk(𝑚, has_region()) do
2: if is_dispatchable(get_region(𝑛)) then
3: 𝑑 ← wrap_ops(get_ops(𝑛), new(dispatch))
4: for 𝑜𝑝 in get_ops(𝑑) do
5: wrap_ops({𝑜𝑝}, new(task))

existing dialects, HIDA can carry out loop and directive-level
HLS optimizations in a hierarchical manner.

6 HIDA-OPT
Although previous works [26, 70] have enabled inter-task
parallelization through dataflow, they could not conduct
dataflow-oriented optimizations. Specifically, ScaleHLS [70]
could automatically legalize a computation graph into a
dataflow model and enable code generation but ignored the
inter-task design space coupling [41], resulting in subopti-
mal dataflow designs. HPVM2FPGA [26] used an ML-driven
algorithm [53] for DSE, but it only introduced a boolean
parameter to enable/disable global dataflow, again, leading
to the restricted search of the design space. In this section,
we propose a HIDA-OPT solution consisting of five steps to
tackle the dataflow optimization problem.

6.1 Functional Dataflow Construction
We leverage the transformations available in MLIR [20, 45]
to generate a hierarchical computation graph at the level
of linear algebra [19] or loop [18]. Algorithm 1 shows the
pseudo-code of converting the initial computation graph
to the Functional dataflow. From line 1 to 3, we wrap each
dispatchable region with a dispatch operation in a bottom-
up manner, where a region is defined as dispatchable if it
is owned by an iterative operation, such as loop and func,
while containing at least two iterative operations. For in-
stance, a loop region containing two child loops is considered
to be dispatchable as the two child loops can be dataflowed.
Then, from line 4 to 5, each operation is wrapped with a
separate task operation to construct a legal dataflow model.

6.2 Functional Dataflow Optimization
Once the initial Functional dataflow is constructed, we can
optionally fuse dataflow tasks to balance the task workloads
while reducing the communication cost. Algorithm 2 shows
the task fusion process, where the inputs are the initial
dataflow and a set of pre-defined profitable fusion patterns,
such as element-wise operations fusion. From line 1 to 10, we
recursively partition each dispatch operation in a top-down
manner. Specifically, we first fuse adjacent tasks into new
tasks through a pattern-driven worklist algorithm (lines 2 to
6). The pre-defined task fusion patterns are recursively ap-
plied to the dataflow until no pattern can be matched. Then,

6

Algorithm 2 Functional dataflow task fusion
Require: 𝑚, top module of the Functional dataflow
Require: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 , set of profitable task fusion patterns
Ensure: Updated𝑚, top module of the partitioned dataflow
1: for 𝑑 in preorder_walk(𝑚, is_instance(dispatch)) do
2: 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ← queue(get_tasks(𝑑))
3: while not is_empty(𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡) do
4: 𝑡 ← pop(𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡)
5: if 𝑡 ′ ← get_matched_task(𝑡 , 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠) then
6: push(𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 , wrap_ops({𝑡 , 𝑡 ′}, new(task)))
7: repeat 𝑡0, 𝑡1 ← get_least_critical_tasks(𝑑 , 2)
8: wrap_ops({𝑡0, 𝑡1}, new(task))
9: until not is_fusion_profitable(𝑡0, 𝑡1)
10: simplify_dispatch_hierarchy(𝑑)

%tensor = hida.task() : tensor<64x64xi8> { ... }

hida.task() { ... %tensor ... }

%buffer = hida.buffer : memref<64x64xi8, ...>

hida.node() -> (%buffer : memref<64x64xi8, ...>) { ... }

hida.node(%buffer : memref<64x64xi8, ...>) -> () { ... }

(a) Functional Dataflow

(b) Structural Dataflow

Figure 6. Functional to Structural dataflow lowering.

we continuously fuse the least critical two adjacent tasks
to re-balance the dataflow until the fusion begins to gener-
ate a new critical task (lines 7 to 9). Finally, in line 10, we
simplify the hierarchy by canonicalizing the dispatch and
task operations. For instance, a task containing only one
sub-task should be canonicalized to a single task. Notably,
HIDA-IR’s systematic dataflow representation allows the
task fusion process to be expanded with different heuristics
or algorithms under varying scenarios.

6.3 Structural Dataflow Construction
The Functional dataflow can be lowered to Structural dataflow
for low-level optimizations and code generation. The dataflow
lowering is composed of three procedures: (1) buffer oper-
ation generation; (2) dispatch to schedule operation map-
ping; (3) task to node operation mapping. Figure 6 shows a
simplified example of the Functional to Structural dataflow
lowering, where the two task operations in Figure 6(a) are
mapped to node operations in Figure 6(b) correspondingly.
The distinction between tensor andmemory semantics draws
a line between the Functional and Structural dataflow: ten-
sors are immutable objects passed between producers and
consumers directly; buffers are mutable objects that can be
instantiated in hardware and modified multiple times. There-
fore, in Figure 6(a), the %tensor object is produced by the
first task operation and directly consumed inside of the sec-
ond task operation. In contrast, we can observe that the
original %tensor object is lowered to a buffer operation

Opt. Schedule

Node0

Schedule

Node1

Node2

Buf1

Buf2

Opt. Schedule

Node1

Node2

Buf1 Buf2

Buf2’

Schedule

Node1

Node2

Buf1

Buf2

Node1
Logic

Node2
Logic

Buf1

Buf2

Node0

Buf0

Node0

Buf0

Node0

Buf0

Node0

Buf0

(a) (b) (c) (d)

Figure 7. Eliminate multiple producers. Double arrows in-
dicate both read and write on a buffer. For instance, in (a),
Node1 may first read from Buf2 and then write results to it.

in Figure 6(b). Correspondingly, the first node operation be-
comes a user of the %buffer object with read-write effect,
while the second node operation uses the %buffer object
with read-only effect, given the syntax defined in Figure 4.

Automation. For procedure (1) above, each tensor result
of each task operation is converted to a buffer operation
with default partition fashions, tiling, vectorization factors,
and placement annotations. For procedures (2) and (3) above,
because the Functional operations are transparent while the
Structural operations are isolated from above context, the
live-ins andmemory effects are analyzed during themapping.
As shown in Figure 4, the arguments of the node operations
are explicitly grouped based on their memory effects. No-
tably, procedure (1) to (3) can generate a legal Structural
dataflow, and the node and buffer operations will be opti-
mized later in the dataflow balancing and parallelization.

6.4 Structural Dataflow Optimization
At the Structural dataflow level, we propose two optimiza-
tions that are crucial for dataflow efficiency but have not been
thoroughly studied in existing tools: (1) Multi-producer elim-
ination, which can eliminate multiple nodes writing to the
same buffer and improve the dataflow parallelism; (2) Data
path balancing, which can balance different data paths by
inserting on-chip or external buffers, balancing the pipeline
execution rate to achieve the best throughput.

6.4.1 Eliminate Multiple Producers. Dataflow architec-
tures often contain buffers written to by multiple producers,
leading to inefficient dataflow execution. For example, in
Figure 7(a), correctly managing the memory access of Buf2
is challenging as Node1 and Node2 simultaneously write to it.
As a result, to preserve correctness, the dataflow structure
must be executed sequentially.
Solution. HIDA-OPT resolves this problem considering

two cases: (1) Buffer duplication. In the case of Figure 7(a), we
eliminate the multiple producers by duplicating Buf2 into the

7

Algorithm 3 Multiple producers elimination
Require: 𝑠 , dataflow schedule
Ensure: Updated 𝑠 , transformed dataflow schedule
1: for 𝑏 in get_internal_buffers(𝑠) do
2: 𝑝_𝑙𝑖𝑠𝑡 ← topo_sort(get_producers(𝑏))
3: for 𝑝 in drop_front(𝑝_𝑙𝑖𝑠𝑡) do ⊲ exclude the 1st producer
4: 𝑏′ ← clone(𝑏)
5: if read_effect(𝑝 , 𝑏) then
6: 𝑐𝑜𝑝𝑦 ← new(copy, 𝑏, 𝑏′)
7: insert_to_front(𝑐𝑜𝑝𝑦, get_region(𝑝))
8: for 𝑢 in get_users(𝑏) do
9: if dominate(𝑝 , 𝑢) then ⊲ include 𝑝 itself
10: replace_use_with(𝑏, 𝑏′, 𝑢)
11: for 𝑏 in get_external_buffers(𝑠) do
12: 𝑝_𝑙𝑖𝑠𝑡 ← get_producers(𝑏)
13: wrap_ops(𝑝_𝑙𝑖𝑠𝑡 , new(node)) ⊲ merge producers

Buf2’ as shown in Figure 7(b). As a result, Node1 and Node2
no longer write to Buf2 simultaneously, allowing the struc-
ture to be scheduled in a pipelined manner. This duplication
is possible due to the semantics of the Structural IR, where
Buf2 is allocated inside the context of its parent schedule,
ensuring that no external side-effect operation can access
Buf2. (2) Node fusion. For Figure 7(c), Node1 and Node2 write
to Buf2 allocated outside of its parent schedule. In this case,
we cannot apply the same transformation as case (1) because
there may exist an external node having write-effect on Buf2.
Specifically, if we duplicate Buf2 into Buf2’, only the original
Buf2 can be updated by the external write-effect nodes, leav-
ing outdated data in Buf2’. Therefore, in the next iteration,
Buf2’ may hold incorrect data and eventually lead to in-
correct functionality. Thus, to eliminate the multi-producer
violation, we fuse Node1 and Node2 into a new node and
sequentially execute them as shown in Figure 7(d).
Automation. Lines 1 to 10 of Algorithm 3 show the

pseudo-code of case (1) above. For each internal buffer, we
first collect all its producers and sort them based on SSA dom-
inance to maintain the predetermined memory access order
in the subsequent transformations. Then, for each producer
except the first one, we duplicate a new buffer b’ for it (line 4)
and create an explicit memory copy from the original buffer
b to b’ (lines 5 to 7) if the current producer p reads from b.
Finally, we replace uses of b with b’ if the user is dominated
by the p (lines 8 to 10), leaving exactly one producer for the
original buffer b. Lines 11 to 13 of Algorithm 3 shows the
pseudo-code of case (2) that merges all producers of each
external buffer into a single node to avoid data racing.
Complexity. One can observe that case (2) employs a

more conservative transformation and enables the dataflow
execution of the whole design by only enforcing the sequen-
tial execution of Node1 and Node2. One may argue for a
more comprehensive inter-node analysis of Buf2 to deter-
minewhether the external write-effect nodeswill intervene if
we were to duplicate Buf2 - this could work on small dataflow

Opt. Schedule (v2) External
Memory

Schedule

Node1

Node2

Buf1

Buf2

Node0

Buf0 Buf3

Opt. Schedule (v1)

Node1

Node2

Buf1

Buf2

Node0

Buf0 Buf3

Buf3’

Node1

Node2

Buf1

Buf2

Node0

Buf0 Token

Token’

AXI
Bus

(a) (b) (c)

Copy
Buf3’’
Buf3’
Buf3

Soft
FIFO

Figure 8. Balance data paths. Dash line block represents a
1-bit token buffer. Soft FIFO is allocated in external memory
and interfaced with dataflow through AXI interconnect.

architectures, but it does not scale well. Many dataflow nodes
at different hierarchies can access shared buffers; as a result,
an inter-node analysis has a complexity of 𝑂 (𝑚𝑛2), where
𝑚 denotes the number of shared buffers and 𝑛 is the number
of nodes accessing the same buffer.

6.4.2 Balance Data Path. A complicated dataflow struc-
ture often has multiple data paths; some paths may have
more dataflow nodes to execute. If left unoptimized, the
unbalanced paths can significantly degrade the overall per-
formance of the final design. For instance, in Figure 8(a),
the Node0-Node1-Node2 path is longer than the Node0-Node2
path. As a result, Node0 must wait until the longer path
completes before it can process the next data frame. This
situation is very common in real-world applications, such as
ResNet [30], which has shortcut paths in the residual blocks.
Note that there are two levels of balancing in HIDA: one
is the data path balancing we discuss in this section; the
other is node delay balancing that will be handled separately
during the dataflow parallelization.

Solution. HIDA-OPT resolves this issue using two meth-
ods: (1) On-chip buffer duplication. We can duplicate buffers
on the shorter data paths to balance the execution speed. For
instance, in Figure 8(b), Buf3 is duplicated to Buf3’, followed
by an automatic insertion of a copy node between Buf3 and
Buf3’. Through this approach, the Node0-Copy-Node2 data
path can execute in a pipelined manner at the same rate as
another data path, such that Node0 no longer needs to wait.
(2) Soft FIFO in external memory. As shown in Figure 8(c), a
soft FIFO is allocated in the external memory to substitute
Buf3. The FIFO is soft because data is not really shifted in
the FIFO. Instead, the memory access addresses of dataflow
nodes are rotated to access the correct data. For instance, in
Figure 8(c), Node0 is writing to Buf3, while Node1 and Node2
are reading from Buf3’ and Buf3”, respectively. Then in the
next dataflow iteration, Node0 will write to Buf3”, and Node1
and Node2 will read from Buf3 and Buf3’, respectively.

8

Listing 1. A dataflow example in C++. We assume
each nested loop is a dataflow node.

1 float A[32][16];
2 NODE0_I: for (int i=0; i<32; i++)
3 NODE0_K: for (int k=0; k<16; k++)
4 A[i][k] = ...; // Load array A.
5
6 float B[16][16];
7 NODE1_K: for (int k=0; k<16; k++)
8 NODE1_J: for (int j=0; j<16; j++)
9 B[k][j] = ...; // Load array B.
10
11 float C[16][16];
12 NODE2_I: for (int i=0; i<16; i++)
13 NODE2_J: for (int j=0; j<16; j++)
14 NODE2_K: for (int k=0; k<16; k++)
15 C[i][j] = A[i*2][k] * B[k][j];

Table 4. Node connections appearing in Listing 1. S and T denote the
source and target nodes of the connection. ∅ denotes empty.

Source Target Buffer
Permutation Map Scaling Map

S-to-T T-to-S S-to-T T-to-S

Node0 Node2 A [0, ∅, 1] [0, 2] [0.5, 1] [2, ∅, 1]
Node1 Node2 B [∅, 1, 0] [2, 1] [1, 1] [∅, 1, 1]

Table 5. Node parallelization results of Listing 1 assuming a maximum
parallel factor of 32.

Node Intensity
Parallel Factor Loop Unroll Factors

w/o IA w/ IA IA+CA IA CA Naive

Node0 512 32 4 [4, 1] [2, 2] [8, 4] [4, 8]
Node1 256 32 2 [1, 2] [1, 2] [4, 8] [4, 8]
Node2 4,096 32 32 [4, 8, 1] [4, 8, 1] [4, 8, 1] [4, 8, 1]

Elastic Node Execution. For method (2) above, after the
soft FIFO is generated, the original Buf3 is substituted with
external memory interfaces, such as memory-mapped AXI
interfaces. Therefore, the dependencies between dataflow
nodes associated with Buf3 are no longer explicit - they
access external memories through assigned addresses instead
of sharing Buf3. To maintain the correct execution order,
HIDA can automatically construct a token flow between
these dataflow nodes. For instance, in Figure 8(c), once Node0
completes its computation, it will send a Token, and Node1
and Node2 will not start until they receive the Token and
Token’ respectively. This way, the token flows elastically
maintain the execution order, and no static logic in the form
of an FSM is needed to control the execution.

6.5 Structural Dataflow Parallelization
After dataflow optimization, HIDA will parallelize each node
to improve the overall throughput and latency. However, au-
tomatic parallelization is often very challenging for several
reasons: (1) Memory data layout. Degradation of dataflow
performance may occur without proper alignment between
the computation pattern and memory layouts. (2) Connected-
ness of nodes. We define two nodes as having a connection if
they communicate through shared buffers. Due to reason (1),
when two nodes are connected, the parallelism of each node
should be aware of the shared memory layout. (3) Computa-
tion intensity of nodes.We define the number of operations
contained by a node as its intensity. To maximize the overall
throughput while minimizing resource utilization, the opti-
mal parallel factors should be proportional to the intensity
of dataflow nodes. Due to the coupling of local design spaces,
the local optimality of the scheduling of each node can no
longer automatically lead to the global optimal solution for
dataflow architectures.

6.5.1 Intensity and Connection-Aware Approach. The
challenges discussed above are tightly coupled and need to
be handled holistically. In HIDA, we propose an intensity-
aware (IA) and connection-aware (CA) approach to deter-
mine the best parallelization strategies:
Step (1) Intensity and Connection Analysis.We first

construct two maps to record the intensity and connections
of each dataflow node. For each connection, we record the
source and target node, associated buffer, permutation maps
holding the loop level alignment, and scaling maps holding
the stride alignment. For instance, in Listing 1, Node0 and
Node2 are connected through array A. Because Node0 writes
to array Awith the first and second loops, while Node2 reads
with the first and third loops, the Node0-to-Node2 permuta-
tion map is [0, ∅, 1], where ∅ denotes empty. Meanwhile, the
Node0-to-Node2 scaling map is [0.5, 1] as Node2 reads array
A with a stride of 2. Table 4 shows the two connections in
Listing 1. The permutation maps and scaling maps will be
used to align the loop unroll factors of connected nodes in
step (4) below.
Step (2) Node Sorting.We then sort all dataflow nodes

into a worklist in descending order of the number of con-
nections with the computation intensity as tie-breaker. This
determines the order in which we parallelize each node. In-
tuitively, the parallelization strategy of a node with more
connections will affect more nodes, while higher-intensity
nodes, being more computationally complex, are more sen-
sitive to optimization. Therefore, following the results of
step (1), the order of nodes in Listing 1 in terms of criticality
is Node2, Node0, and then Node1.

Step (3) Parallel Factor Generation.Guided by resource
constraints, HIDA-OPT determines the maximum parallel
factor that can be applied to a dataflow node. Then, the
parallel factor of each node will be set proportionally to its

9

Algorithm 4 Node parallelization
Require: 𝑛, dataflow node
Ensure: Updated 𝑛, transformed dataflow node
1: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 ← new([][]) ⊲ list of constraints
2: 𝑐_𝑙𝑖𝑠𝑡 ← get_connected_nodes(𝑛)
3: for 𝑐 in 𝑐_𝑙𝑖𝑠𝑡 do
4: 𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 ← get_unroll_factors(𝑐)
5: 𝑠_𝑚𝑎𝑝 ← get_scaling_map(𝑐) ⊲ from step (1)
6: 𝑝_𝑚𝑎𝑝 ← get_permutation_map(𝑐) ⊲ from step (1)
7: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← permute(𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 ⊙ 𝑠_𝑚𝑎𝑝 , 𝑝_𝑚𝑎𝑝)
8: append(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 , 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)
9: 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟 ← get_parallel_factor(𝑛) ⊲ from step (3)
10: 𝑑𝑠𝑒 ← init_dse(𝑛) ⊲ initialize DSE engine
11: repeat 𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 ← propose_unroll_factors(𝑑𝑠𝑒)
12: 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 ← true
13: for 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 in 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 do
14: for 𝑐𝑜𝑛𝑠𝑡𝑟 , 𝑢𝑓 in zip(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 , 𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠) do
15: if 𝑐𝑜𝑛𝑠𝑡𝑟 % 𝑢𝑓 != 0 and 𝑢𝑓 % 𝑐𝑜𝑛𝑠𝑡𝑟 != 0 then
16: 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 ← false
17: if product(𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠) >= 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟 then
18: 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 ← false
19: if 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑 then
20: evaluate_and_evolve_dse(𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 , 𝑑𝑠𝑒)
21: else
22: evolve_dse(𝑢𝑛𝑟𝑜𝑙𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 , 𝑑𝑠𝑒)
23: until is_converged(𝑑𝑠𝑒) or is_early_terminated(𝑑𝑠𝑒)
24: apply_unrolling(𝑛, get_final_unroll_factors(𝑑𝑠𝑒))

intensity. In Listing 1, assuming the maximum parallel factor
is 32, the parallel factor of each node is listed in Table 5.
Step (4) Node Parallelization. Dataflow nodes are par-

allelized in the order determined by step (2). Algorithm 4
shows the pseudo-code of node parallelization. For each node
n, we first query whether any nodes connected with it have
been parallelized (line 2). If so, each connected node’s un-
roll factors are multiplied with the scaling map and then
permutated with the permutation map generated in step (1)
(lines 3 to 8). The processed unroll factors are recorded in a
constraints_list to constrain the intra-node DSE. Meanwhile,
in line 9, we also get the parallel factor of node n generated
in step (3) to constrain the overall parallelism of n.

With all the constraints generated, lines 10 to 23 of Algo-
rithm 4 illustrate a simplified intra-node DSE for node n. In
each iteration of exploration, the DSE engine will propose
new unroll factors for evaluation. However, the proposed
factors could fail to meet the constraints in two cases: (1) If
any of the unroll factors are mutually indivisible with the
corresponding constraint (lines 13 to 16); or (2) the overall
parallelism exceeds the pre-calculated parallel factor (lines
17 to 18). Case (1) can cause unaligned inter-node mem-
ory access behavior, while case (2) can cause imbalanced
dataflow execution, both leading to sub-optimal dataflow
efficiency. If all the constraints are fulfilled, HIDA employs a
quality of results (QoR) estimator from [70] to evaluate the

Table 6. Array partition results of Listing 1.

Array
Array Partition Factors Bank Number

IA+CA IA CA Naive IA+CA IA CA Naive

A [8, 1] [8, 2] [8, 4] [8, 8] 8 16 32 64
B [1, 8] [2, 8] [4, 8] [8, 8] 8 16 32 64
C [4, 8] [4, 8] [4, 8] [4, 8] 32 32 32 32

performance and resource utilization of the proposed factors
(line 20). Then, the evaluation results or failure message are
passed to the DSE and evolve the exploration. Finally, in line
23, we terminate the DSE if the results have converged or
met the early termination criteria. The proposed algorithm
can identify the Pareto frontier in the local design space and
selects the best design point under the imposed constraints.

6.5.2 Discussion. We summarize the results of IA+CA,
IA-only, CA-only, and naive parallelization in Table 5, where
the naive solution applies the maximum parallel factor 32 to
all dataflow nodes. One can observe our IA+CA approach
achieves the best unroll factors, eventually leading to the
least computation resource utilization. Meanwhile, IA and
CA can also reduce memory resource utilization. Table 6
shows the array partition results. Array partitioning is an
HLS technique that divides a large array into smaller sub-
arrays to enable parallel access. One can observe that our
IA+CA approach achieves the lowest number of banks for
arrays appearing in Listing 1, resulting in the lowest memory
utilization. For this small example, the margin can already
reach 8× on arrays A and B compared to the naive solution.
For large-scale dataflow applications, the parallelization so-
lution can determine whether the overall solution is scalable;
an ablation study is conducted in Section 7.3.

7 Evaluation
To evaluate HIDA, we use FPGAs as the target platform and
perform two sets of experiments using C++ and PyTorch in-
puts and an ablation study on a ResNet-18 model. As depicted
in Figure 3, AMD Vitis HLS 2022.1 [34] is used for generating
RTL code. All reported performances and resource utilization
are collected from the synthesis results of Vitis HLS.

7.1 C++ Kernels Evaluation
Experiment Settings. We evaluate HIDA with a set of C++
benchmarks from PolyBench [58]. The benchmarks cover
multiple categories, including blas routines (gesummv, symm,
and syr2k), linear algebra kernels (2mm, 3mm, atax, bicg, and
mvt), data mining (correlation), and stencils (jacobi-2d and
seidel-2d). The target platform is AMD-Xilinx ZU3EG FPGA.
Table 7 shows the evaluation results. Although Vitis HLS can
automatically apply optimizations such as loop pipeline, it
cannot conduct complex dataflow analysis and optimizations.

10

Table 7. Evaluation results for C++ kernels. ScaleHLS designs are automatically generated by [70]. SOFF results are ported
from their paper [37], which compared with SDAccel (previous name of Vitis). Vitis designs are solely optimized by Vitis HLS.

Kernel
HIDA

Compile
Time (s)

LUT
Number

FF
Number

DSP
Number

Throughput (Samples/s)*

HIDA ScaleHLS [70] SOFF [37] Vitis [34]

2mm 0.65 38.8k 27.4k 269 239.22 122.39 (1.95×) 30.67 (7.80×) 1.23 (194.88×)
3mm 0.79 38.7k 27.8k 243 175.43 92.33 (1.90×) - 1.04 (167.99×)
atax 2.06 44.6k 34.6k 260 1,021.39 932.26 (1.10×) 2,173.17 (0.47×) 103.18 (9.90×)
bicg 0.72 16.0k 15.1k 61 2,869.69 2,869.61 (1.00×) 2,295.75 (1.25×) 104.19 (27.54×)

correlation 0.91 14.5k 12.3k 66 67.33 59.77 (1.13×) 3.96 (16.99×) 1.32 (50.97×)
gesummv 0.60 34.2k 22.8k 232 31,685.68 31,685.68 (1.00×) 3,466.70 (9.14×) 266.65 (118.83×)
jacobi-2d 1.98 91.4k 56.6k 352 257.27 128.63 (2.00×) - 2.71 (94.95×)

mvt 0.42 23.8k 16.5k 162 9,979.04 4,989.02 (2.00×) 870.01 (11.47×) 62.13 (160.62×)
seidel-2d 3.59 5.5k 2.5k 4 0.14 0.14 (1.00×) - 0.11 (1.28×)
symm 1.05 14.9k 9.5k 74 2.62 2.62 (1.00×) - 2.02 (1.29×)
syr2k 0.69 14.3k 12.8k 78 27.68 27.67 (1.00×) - 1.44 (19.23×)

Geo. Mean 0.99 1.29× 4.49× 31.08×

* Numbers in () show throughput improvements of HIDA over others.

As a result, HIDA achieves 31.08× higher throughput on
average over Vitis HLS.
Comparison with Previous Works. Compared with

the state-of-the-art (SOTA) HLS optimization framework
ScaleHLS [70], and another HLS framework SOFF [37], HIDA
achieved 1.29× and 4.49× higher throughput, respectively.
We observed that for single-loop kernels (bicg, gesummv,
seidel-2d, symm, and syr2k), the performance of HIDA was
on par with ScaleHLS due to these kernels not presenting
any dataflow optimization opportunities. For the multi-loop
kernels, HIDA outperforms ScaleHLS due to dataflow opti-
mizations. When only considering multi-loop kernels, HIDA
achieves 1.57× higher throughput than ScaleHLS. We con-
cluded that the dataflow scheduling and parallelization prob-
lems are pervasive based on the evaluation results. Thus,
HIDA-OPT can better optimize these kernels, ultimately lead-
ing to an increased performance.

7.2 PyTorch Models Evaluation
Experiment Settings.We evaluate HIDA with a set of deep
neural network (DNN) benchmarks written in PyTorch to
understand its performance on large-scale dataflow appli-
cations. The benchmarks cover multiple categories of DNN
models, including image classification (ResNet-18 [30], Mo-
bileNet [31], ZFNet [74], and VGG-16 [63]), object detec-
tion (YOLO [60]), and fully-connected networks (MLP). The
optimization for these models exhibit significant variations
under dataflow setting, owing to the distinct layer types and
interconnections. The targeted platform is one super logic
region (SLR) of an AMD-Xilinx VU9P FPGA. Table 8 shows
the evaluation results. Even for these complicated DNNmod-
els, HIDA only takes 108.7 seconds on average to compile
them into dataflow implementations.

75.6X
41.5X

57.0X

Figure 9.Memory utilization compared with ScaleHLS [70].

Comparison with Previous Works. Again, we compare
HIDAwith ScaleHLS [70], where we observe an 8.54× higher
throughput. The throughput gains are muchmore significant
than the C++ kernels due to large DNN models exposing
more opportunities for HIDA to optimize the dataflow ar-
chitecture. For ZFNet and YOLO, ScaleHLS cannot produce
results due to the DNNs having irregular convolution sizes
and high-resolution inputs, respectively, demonstrating the
superior flexibility and scalability of HIDA. For the four
benchmarks supported by ScaleHLS, we use DSP efficiency
to compare the two frameworks, calculated as:

𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐷𝑆𝑃 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ×𝑂𝑃𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝐷𝑆𝑃 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
, (1)

where𝑂𝑃𝑠 denotes the number ofmultiply-accumulate (MAC)
operations per sample of the DNN, Throughput is samples
per second, and 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 denotes the clock frequency con-
stant at 200MHz for both ScaleHLS and HIDA. DSP efficiency
is a common metric for comparing the efficiency of DNN
accelerators across different platforms or frameworks. A
100% of DSP efficiency indicates all instantiated DSPs in the
accelerator continuously operating without stalling. HIDA

11

Table 8. Evaluation results for PyTorch models. DNNBuilder results are directly from their paper [77]. To make fair comparison,
we constrained the FPGA resources to the same with DNNBuilder. ScaleHLS designs are automatically generated by [70].

Model
HIDA

Compile
Time (s)

LUT
Number

DSP
Number

Throughput (Samples/s)* DSP Efficiency*

HIDA DNNBuilder
[77]

ScaleHLS
[70] HIDA DNNBuilder

[77]
ScaleHLS

[70]

ResNet-18 83.1 142.1k 667 45.4 - 3.3 (13.88×) 73.8% - 5.2% (14.24×)
MobileNet 110.8 132.9k 518 137.4 - 15.4 (8.90×) 75.5% - 9.6% (7.88×)
ZFNet 116.2 103.8k 639 90.4 112.2 (0.81×) - 82.8% 79.7% (1.04×) -
VGG-16 199.9 266.2k 1118 48.3 27.7 (1.74×) 6.9 (6.99×) 102.1% 96.2% (1.06×) 18.6% (5.49×)
YOLO 188.2 202.8k 904 33.7 22.1 (1.52×) - 94.3% 86.0% (1.10×) -
MLP 40.9 21.0k 164 938.9 - 152.6 (6.15×) 90.0% - 17.6% (5.10×)

Geo. Mean 108.7 1.29× 8.54× 1.07× 7.49×

* Numbers in () show throughput/DSP efficiency improvements of HIDA over others.

achieves 7.49× higher DSP efficiency than ScaleHLS on aver-
age and 14.24× for ResNet-18. We attribute the much higher
efficiency for ResNet-18 to HIDA’s ability to optimize short-
cut data paths. For VGG-16, we observe an over 100% DSP
efficiency, attributing the excess percentage to the back-end
RTL generator where MAC operations can be instantiated
with LUTs when resources are abundant.

Apart from the throughput and efficiency improvements,
we also observe substantial on-chip memory reduction by
HIDA compared to ScaleHLS. As Figure 9 shows, HIDA can
reduce memory utilization by 41.5× to 75.6× due to several
factors: (1) HIDA can leverage loop tiling and local buffer cre-
ation to only cache small tiles of intermediate results while
enabling the dataflow execution. In comparison, ScaleHLS
must keep all intermediate results on-chip due to the lack
of external memory access support. (2) The IA+CA paral-
lelization can drastically reduce the buffer sizes. In summary,
HIDA can utilize computation and memory resources more
efficiently and achieve substantial throughput improvements
on DNN models compared to SOTA frameworks.

Comparison with Dedicated DNN Accelerator. In ad-
dition to the comparison with HLS optimization frameworks,
we further compareHIDAwith a dedicated DNN acceleration
framework, DNNBuilder [77]. DNNBuilder has RTL-based
and human-designed DNN IPs and can enable the dataflow
execution of all the instantiated IPs to achieve SOTA through-
put and efficiency on FPGAs. As shown in Table 8, HIDA
achieves 1.29× and 1.07× higher throughput and DSP effi-
ciency compared to DNNBuilder, which already has an ex-
tremely high DSP efficiency. Note that DNNBuilder doesn’t
support ResNet-18 and MobileNet due to its lack of support
for shortcut paths and depthwise convolutions. Through this
comparison, we demonstrate the productivity and perfor-
mance of HIDA outperforming a dedicated DNN acceleration
framework. Additionally, we demonstrate the flexibility of
HIDA, which can automatically adapt to a wide range of
computational patterns.

(a)

(b)

(c)

Figure 10. Parallel factor and tile size ablation on ResNet-18.

7.3 Ablation Study on ResNet-18
Parallel Factor and Tile Size Ablation. To understand
the scalability of HIDA, we perform an ablation study on
ResNet-18 by sweeping the maximum parallel factor from 1
to 256 and tile size from 2 to 32. Three metrics (DSP utiliza-
tion, memory utilization, and throughput) are measured for
each combination of parallel factor and tile size. Figure 10

12

shows the ablation study results. Overall, as the parallel fac-
tor increases, all three metrics increase as expected, showing
promising scalability of HIDA. Meanwhile, the overall trend
predictably showed more memory instances being utilized as
we increased the tile size. However, we also observed some
interesting findings summarized as follows:

• Small tile can drastically increase DSP utilization. Counter-
intuitively, the number of DSPs increases when the tile size
decreases, highlighted by the data point with a parallel fac-
tor of 1 and a tile size of 2, instantiating 518 DSPs. Analysis
shows that due to small tiles needing fine-grained control
of memory accesses, a large number of DSPs are used for
address calculations instead of actual computations.
• Smaller tile may not reduce memory utilization. For small
parallel factors (1 to 8) and small tile sizes (2 to 8), the mem-
ory utilization does not change noticeablywithin the range.
Analysis shows that as the minimum memory instance is
BRAM (block RAM) for FPGAs, increasing parallel factor
or tile size may not demand more BRAM instances as long
as the current BRAMs are large enough to hold the data
tiles and can provide enough bandwidth.
• Throughput and tile size may positively correlate. Ideally,
different tile sizes should not affect the throughput. How-
ever, experimental results disagree: throughput increases
with tile size being larger, especially for large parallel fac-
tors (32 to 256). Analysis shows two main reasons for the
observed behavior: (1) Small tile sizes cannot provide suf-
ficient bandwidth, resulting in a degradation of the level
of parallelism.(2) Small tile sizes cannot provide sufficient
burst length for consecutive external memory access, lead-
ing to poor external memory efficiency.

Node Parallelization Ablation. Section 6 introduces
IA and CA approaches to drive the dataflow parallelization.
To better understand the performance of the two methods
on large-scale applications, we conduct an ablation study
on ResNet-18. In this study, we set four groups of experi-
ments (IA+CA, IA-only, CA-only, and Naive) for comparison,
and for each group, we sweep the maximum parallel factor
from 1 to 256. As expected, the four groups show a similar
trend in DSP numbers - they increase proportionally with
the parallel factor. However, the IA+CA group shows a dras-
tically different trend in memory and throughput compared
with the other groups - only IA+CA scales well when we
increase the parallel factor. For instance, for the data sam-
ples with a parallel factor of 64, compared with the other
groups, IA+CA utilizes 3.7× less DSP and 1.2× less memory,
yet achieves 44.3× better throughput. After studying the
generated accelerators, we found for all the other groups
except IC+CA, the compiler generates overly-complicated
control logics due to the mismatch between node unroll fac-
tors and memory layouts, ultimately falling back to flawed
designs. Meanwhile, even when all groups can be scaled well,

(a)

4.5X3.7X

(b)

4.7X
1.2X

(c)

1.0X

44.3X

Figure 11. Intensity-aware (IA) and connection-aware (CA)
dataflow parallelization ablation on ResNet-18.

IA+CA shows substantially better resource utilization effi-
ciency than other groups. For instance, for the data samples
with a parallel factor of 32, compared with the other groups,
IA+CA performs on par in throughput but utilizes 4.5× less
DSP and 4.7× less memory. Through these comparisons, we
demonstrate the superior scalability and efficiency of our
proposed IA+CA dataflow parallelization approach.

8 Related Works
8.1 MLIR Infrastructure
MLIR [20, 45] is a compiler infrastructure with multiple lev-
els of representation, allowing users to tailor domain-specific
compilers. MLIR also provides commonly used IRs and opti-
mizations for different domains, including tensor [21], linear
algebra [19], and loop [18]. As MLIR is an infrastructure for
compilers, it does not natively support hardware-oriented
compilation; however, many related compilers have been
developed on top of MLIR. IREE [17] provides compilation
and runtime support for hardware accelerators like GPU.
CIRCT [16] is a toolchain for circuit design and optimization,
supporting HLS, HDL-generation languages [3], and HDL.

13

8.2 HLS Languages
Different domain-specific languages (DSL) have been pro-
posed to improve the productivity and performance of com-
mercial HLS tools. TAPA [10, 29] introduced specialized
interfaces to enable dataflow and efficient external mem-
ory access, but didn’t provide solution for dataflow DSE. As
a result, TAPA requires users to make many design deci-
sions, such as task parallelization and buffer implementation.
Spatial [42] abstracted interfaces for describing the control,
memory, and I/O structures, enabling auto-tuning-basedDSE.
Dahlia [54] proposed an affine-based approach to improve
the predictability of HLS designs. Aetherling [25] proposed a
strong type system to tackle the fine-grained scheduling and
DSE of hardware design. Another cluster of works extends
existing language syntax, such as Python, to further raise
the abstraction level of HLS designs, including DaCe [4] and
PyLog [32]. These languages are orthogonal to HIDA, which
attempts to address the dataflow optimization problem with
compiler techniques. As future works, they can be integrated
as front-ends to further improve the productivity of HIDA.
HeteroCL. HeteroCL [43] and HeteroFlow [68] decou-

pled the algorithmic description and optimization of HLS
designs by providing a versatile set of computation, data
type, and data movement customization primitives. Hete-
roCL incorporated third-party frameworks for automated
HLS optimization, including PolySA [13] for systolic arrays
and SODA [9] for stencil applications. However, these au-
tomated optimizations are intra-task and domain-specific.
For inter-task optimizations and computation patterns that
are not covered by third-party frameworks, designers must
make every design decision empirically. Meanwhile, Hete-
roCL cannot directly take PyTorch as an input - designers
must rewrite the PyTorch model in HeteroCL DSL.

8.3 HLS Compilers
Existing works have explored different approaches for the
fine-grained scheduling problem in HLS, including static
scheduling (Spatial [42], SOFF [37], and Calyx [55]), dynamic
scheduling (Dynamatic [39] and TAPAS [49]), and static-
dynamic hybrid scheduling (DASS [8] and Hector [69]). Fine-
grained scheduling deals with operator-level parallelism,
such as multipliers, instead of task-level and thus is very dif-
ferent from the problemswe addressed in HIDA. For instance,
fine-grained scheduling does not consider the intra-task par-
allelization. We have seen a large amount of HLS optimiza-
tion tools, including LLVM-based (Merlin [11], COMBA [79],
and HPVM2FPGA [26]) and MLIR-based (ScaleHLS [70],
POLSCA [80], and SODA-Opt [1]). However, as discussed
in Section 1, these tools either did not consider dataflow
during the compilation or are limited in dataflow-oriented
optimizations. Another alternative solution is leveraging
existing multi-core CPU or CGRA compilers, such as Poly-
Mage [52], Tapir [62], Unified Buffer [48], and Revet [61], for

the purpose of HLS. However, the dataflow optimizations are
not compatible with these compilers due to the fundamen-
tally different programming model and memory hierarchy
of HLS-based dataflow accelerators.

CIRCT. Handshake dialect [15] is a CIRCT dialect imple-
menting the elastic circuit components and dynamic schedul-
ing algorithms proposed in Dynamatic [39]. Coarse-grained
tasks are abstracted as functions in the handshake dialect,
where scalar intermediate results are passed between dif-
ferent functions through handshaking FIFOs. However, for
tensor intermediate results, the handshake dialect adopts a
load-store queue-based [38] shared memory model instead
of the dataflow model for inter-function communication,
drawing a line between the two. Elastic silicon intercon-
nect (ESI) dialect [14] is another CIRCT dialect aiming to
provide type-safe and latency-insensitive interface abstrac-
tion for FPGA/ASIC design. In contrast, HIDA aims to tackle
the DSE problem of fine-grained and coarse-grained sched-
uling, which is orthogonal to the mission of the ESI dialect.

8.4 DNN Compilers
DNN layer fusion algorithms have been studied in recent
years [2, 82] to reduce the layer-wise communication cost
of DNN training or inference. In contrast, HIDA’s task fu-
sion is a general-purpose algorithm for dataflow applications
in different domains. The patterns proposed by [2, 82] can
be implemented and plugged into HIDA. The scheduling
problem of cache-based or scratchpad-based DNN accelera-
tors has also been thoroughly studied, such as in Eyeriss [7],
Diannao [6], and Timeloop [56], either from an architec-
ture or compiler perspective. However, the scheduling of
dataflow-based DNN accelerators is still under intensive
study [61, 81, 85]. The intention to balance the dataflow
pipeline while enabling buffer sharing or streaming between
layer instances (either a single DNN layer, a fused layer, or a
decomposed layer) significantly complicates the scheduling
problem. The reason is, as we mentioned in Section 6.5, the
local optimality of each layer cannot lead to the global op-
timal dataflow architecture. Although existing works, such
as FINN [65] and DNNBuilder [77], explored the problem
to some extent, their framework can only target a subset of
DNNs; for instance, DNNBuilder only supports CNNs.

9 Conclusion
In this paper, we propose HIDA, an HLS framework that
can systematically transform an algorithmic description into
an efficient dataflow implementation. We propose a two-
level dataflow representation, HIDA-IR, and a hierarchical
dataflow optimizer, HIDA-OPT, significantly improving the
productivity, performance, and scalability of HLS dataflow
accelerators. To demonstrate the performance of HIDA, we
evaluate a set of DNN models and C++ kernels, where HIDA
outperforms the existing SOTA hand-tuned RTL-based DNN

14

accelerator and compilation-based HLS frameworks. We
hope that the HIDA framework will serve as a new open in-
frastructure for future dataflow architectural research, allow-
ing researchers to explore the vast design space effectively.

Acknowledgments
We thank all anonymous reviewers and Adrian Sampson
of Cornell University for their valuable feedback and sug-
gestions. This work is supported in part by AMD Center of
Excellence at UIUC, AMDHeterogeneous Adaptive Compute
Cluster (HACC) initiative, NSF 2117997 grant through the
A3D3 institute, and Semiconductor Research Corporation
(SRC) 2023-CT-3175 grant.

References
[1] Nicolas Bohm Agostini, Serena Curzel, Vinay Amatya, Cheng Tan,

Marco Minutoli, Vito Giovanni Castellana, Joseph Manzano, David
Kaeli, and Antonino Tumeo. 2022. An MLIR-based Compiler Flow for
System-Level Design and Hardware Acceleration. In Proceedings of
the 41st IEEE/ACM International Conference on Computer-Aided Design.
1–9.

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016.
Fused-layer CNN accelerators. In 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: constructing hardware in a scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference. 1216–
1225.

[4] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo
Schneider, and Torsten Hoefler. 2019. Stateful dataflow multigraphs:
A data-centric model for performance portability on heterogeneous
architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[5] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. 2010. The polyhedral model is more widely
applicable than you think. In Compiler Construction: 19th International
Conference, CC 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings 19. Springer, 283–303.

[6] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. 2014. Diannao: A small-footprint
high-throughput accelerator for ubiquitous machine-learning. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 269–284.

[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016.
Eyeriss: An energy-efficient reconfigurable accelerator for deep con-
volutional neural networks. IEEE journal of solid-state circuits 52, 1
(2016), 127–138.

[8] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Ienne,
and John Wickerson. 2020. Combining dynamic & static scheduling
in high-level synthesis. In Proceedings of the 2020 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. 288–298.

[9] Yuze Chi, Jason Cong, PengWei, and Peipei Zhou. 2018. SODA: Stencil
with optimized dataflow architecture. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[10] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and
Jason Cong. 2021. Extending high-level synthesis for task-parallel
programs. In 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 204–213.

[11] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng
Zhang. 2016. Source-to-source optimization for HLS. FPGAs for Soft-
ware Programmers (2016), 137–163.

[12] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees
Vissers, and Zhiru Zhang. 2011. High-level synthesis for FPGAs: From
prototyping to deployment. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 30, 4 (2011), 473–491.

[13] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-based systolic
array auto-compilation. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[14] CIRCT Contributors. 2023. CIRCT ESI Dialect. https://circt.llvm.org/
docs/Dialects/ESI/

[15] CIRCT Contributors. 2023. CIRCT Handshake Dialect. https://circt.
llvm.org/docs/Dialects/Handshake/

[16] CIRCT Contributors. 2023. The CIRCT Project. https://github.com/
llvm/circt

[17] IREE Contributors. 2023. The IREE Project. https://github.com/openxla/
iree

[18] MLIR Contributors. 2023. MLIR Affine Dialect. https://mlir.llvm.org/
docs/Dialects/Affine/

[19] MLIR Contributors. 2023. MLIR LinAlg Dialect. https://mlir.llvm.org/
docs/Dialects/Linalg/

[20] MLIR Contributors. 2023. MLIR Project. https://github.com/llvm/llvm-
project/tree/main/mlir

[21] MLIR Contributors. 2023. MLIR Tensor Dialect. https://mlir.llvm.org/
docs/Dialects/TensorOps/

[22] Torch-MLIR Contributors. 2023. Torch-MLIR Project. https://github.
com/llvm/torch-mlir/

[23] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. 1991. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13, 4 (1991), 451–490.

[24] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, andOlivier Temam. 2015. ShiDianNao:
Shifting vision processing closer to the sensor. In Proceedings of the
42nd Annual International Symposium on Computer Architecture. 92–
104.

[25] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat
Hanrahan. 2020. Type-directed scheduling of streaming accelerators.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 408–422.

[26] Adel Ejjeh, LeonMedvinsky, Aaron Councilman, Hemang Nehra, Suraj
Sharma, VikramAdve, Luigi Nardi, Eriko Nurvitadhi, and Rob A Ruten-
bar. 2022. HPVM2FPGA: Enabling true hardware-agnostic FPGA pro-
gramming. In 2022 IEEE 33rd International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 1–10.

[27] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer,
Sergo Jindariani, Nhan Tran, Luca P Carloni, Giuseppe Di Guglielmo,
Philip Harris, Jeffrey Krupa, et al. 2021. hls4ml: An open-source code-
sign workflow to empower scientific low-power machine learning
devices. arXiv preprint arXiv:2103.05579 (2021).

[28] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,
Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard
Mao, et al. 2021. Gemmini: Enabling systematic deep-learning archi-
tecture evaluation via full-stack integration. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 769–774.

[29] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin
Khatti, Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, et al.
2022. TAPA: A Scalable Task-Parallel Dataflow Programming Frame-
work for Modern FPGAs with Co-Optimization of HLS and Physical
Design. arXiv preprint arXiv:2209.02663 (2022).

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE

15

https://circt.llvm.org/docs/Dialects/ESI/
https://circt.llvm.org/docs/Dialects/ESI/
https://circt.llvm.org/docs/Dialects/Handshake/
https://circt.llvm.org/docs/Dialects/Handshake/
https://github.com/llvm/circt
https://github.com/llvm/circt
https://github.com/openxla/iree
https://github.com/openxla/iree
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/Linalg/
https://mlir.llvm.org/docs/Dialects/Linalg/
https://github.com/llvm/llvm-project/tree/main/mlir
https://github.com/llvm/llvm-project/tree/main/mlir
https://mlir.llvm.org/docs/Dialects/TensorOps/
https://mlir.llvm.org/docs/Dialects/TensorOps/
https://github.com/llvm/torch-mlir/
https://github.com/llvm/torch-mlir/

conference on computer vision and pattern recognition. 770–778.
[31] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[32] Sitao Huang, Kun Wu, Hyunmin Jeong, Chengyue Wang, Deming
Chen, and Wen-mei Hwu. 2021. Pylog: An algorithm-centric python-
based FPGA programming and synthesis flow. IEEE Trans. Comput.
70, 12 (2021), 2015–2028.

[33] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc,
and Jonathan Ragan-Kelley. 2022. Exocompilation for productive
programming of hardware accelerators. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation. 703–718.

[34] Advanced Micro Devices Inc. 2022. Vitis High-Level Synthesis User
Guide UG1399 (v2022.2).

[35] Intel Inc. 2022. Intel High Level Synthesis Compiler Pro Edition Reference
Manual (22.4).

[36] Microchip Technology Inc. 2021. LegUp 2021.1 Documentation.
[37] Gangwon Jo, Heehoon Kim, Jeesoo Lee, and Jaejin Lee. 2020. SOFF: An

OpenCL high-level synthesis framework for FPGAs. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 295–308.

[38] Lana Josipovic, Philip Brisk, and Paolo Ienne. 2017. An out-of-order
load-store queue for spatial computing. ACMTransactions on Embedded
Computing Systems (TECS) 16, 5s (2017), 1–19.

[39] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically
scheduled high-level synthesis. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 127–136.

[40] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1–12.

[41] HyeGang Jun, Hanchen Ye, Hyunmin Jeong, and Deming Chen. 2023.
AutoScaleDSE: A Scalable Design Space Exploration Engine for High-
Level Synthesis. ACM Trans. Reconfigurable Technol. Syst. (2023).

[42] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, et al. 2018. Spatial: A language and compiler
for application accelerators. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 296–
311.

[43] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, JieWang, CodyHao Yu, Yuan Zhou,
Jason Cong, and Zhiru Zhang. 2019. HeteroCL: A multi-paradigm
programming infrastructure for software-defined reconfigurable com-
puting. In Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 242–251.

[44] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
symposium on code generation and optimization, 2004. CGO 2004. IEEE,
75–86.

[45] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling compiler infrastruc-
ture for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 2–14.

[46] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River
Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. arXiv preprint arXiv:2002.11054 (2020).

[47] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278–2324.

[48] Qiaoyi Liu, Jeff Setter, Dillon Huff, Maxwell Strange, Kathleen Feng,
Mark Horowitz, Priyanka Raina, and Fredrik Kjolstad. 2023. Unified
Buffer: Compiling Image Processing and Machine Learning Applica-
tions to Push-Memory Accelerators. ACM Transactions on Architecture
and Code Optimization 20, 2 (2023), 1–26.

[49] Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman,
and Gilles Pokam. 2018. TAPAS: Generating parallel accelerators
from parallel programs. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 245–257.

[50] ThierryMoreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. VTA: an open hardware-software
stack for deep learning. arXiv preprint arXiv:1807.04188 (2018).

[51] William S Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zi-
nenko. 2021. Polygeist: Raising C to polyhedral MLIR. In 2021 30th
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT). IEEE, 45–59.

[52] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-
mage: Automatic optimization for image processing pipelines. ACM
SIGARCH Computer Architecture News 43, 1 (2015), 429–443.

[53] Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical
design space exploration. In 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, 347–358.

[54] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore
Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang.
2020. Predictable accelerator design with time-sensitive affine types.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 393–407.

[55] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021.
A compiler infrastructure for accelerator generators. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 804–817.

[56] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W Keckler, and Joel Emer. 2019. Timeloop:
A systematic approach to dnn accelerator evaluation. In 2019 IEEE in-
ternational symposium on performance analysis of systems and software
(ISPASS). IEEE, 304–315.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019).

[58] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark
suite. URL: http://www. cs. ucla. edu/pouchet/software/polybench 437
(2012), 1–1.

[59] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. 2017. Plasticine: A reconfigurable architecture for parallel
paterns. ACM SIGARCH Computer Architecture News 45, 2 (2017),
389–402.

[60] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016.
You only look once: Unified, real-time object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 779–
788.

[61] Alexander Rucker, Shiv Sundram, Coleman Smith, Matthew Vilim,
Raghu Prabhakar, Fredrik Kjolstad, and Kunle Olukotun. 2023. Revet:
A Language and Compiler for Dataflow Threads. arXiv preprint
arXiv:2302.06124 (2023).

[62] Tao B Schardl, William S Moses, and Charles E Leiserson. 2017. Tapir:
Embedding fork-join parallelism into LLVM’s intermediate representa-
tion. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 249–265.

16

[63] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[64] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022.
AutoDSE: Enabling software programmers to design efficient FPGA
accelerators. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 27, 4 (2022), 1–27.

[65] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: A
framework for fast, scalable binarized neural network inference. In
Proceedings of the 2017 ACM/SIGDA international symposium on field-
programmable gate arrays. 65–74.

[66] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason Cong. 2013.
Memory partitioning for multidimensional arrays in high-level syn-
thesis. In Proceedings of the 50th Annual Design Automation Conference.
1–8.

[67] Xuechao Wei, Yun Liang, Xiuhong Li, Cody Hao Yu, Peng Zhang, and
Jason Cong. 2018. TGPA: Tile-grained pipeline architecture for low
latency CNN inference. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). ACM, 1–8.

[68] Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong
Zhang, Debjit Pal, and Zhiru Zhang. 2022. Heteroflow: An accelerator
programming model with decoupled data placement for software-
defined fpgas. In Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 78–88.

[69] Ruifan Xu, Youwei Xiao, Jin Luo, and Yun Liang. 2022. HECTOR:
A Multi-Level Intermediate Representation for Hardware Synthesis
Methodologies. In Proceedings of the 41st IEEE/ACM International Con-
ference on Computer-Aided Design. 1–9.

[70] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang,
Stephen Neuendorffer, and Deming Chen. 2022. Scalehls: A new scal-
able high-level synthesis framework on multi-level intermediate repre-
sentation. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 741–755.

[71] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendorffer,
and Deming Chen. 2022. ScaleHLS: a scalable high-level synthesis
framework with multi-level transformations and optimizations. In
Proceedings of the 59th ACM/IEEE Design Automation Conference. 1355–
1358.

[72] Hanchen Ye, Xiaofan Zhang, Zhize Huang, Gengsheng Chen, and
Deming Chen. 2020. HybridDNN: A framework for high-performance
hybrid DNN accelerator design and implementation. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[73] Mang Yu, Sitao Huang, and Deming Chen. 2021. Chimera: A hybrid
machine learning-driven multi-objective design space exploration
tool for fpga high-level synthesis. In Intelligent Data Engineering and
Automated Learning–IDEAL 2021: 22nd International Conference, IDEAL
2021, Manchester, UK, November 25–27, 2021, Proceedings 22. Springer,
524–536.

[74] MatthewDZeiler and Rob Fergus. 2014. Visualizing and understanding
convolutional networks. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
I 13. Springer, 818–833.

[75] Bingyi Zhang, Rajgopal Kannan, and Viktor Prasanna. 2021. Boost-
gcn: A framework for optimizing gcn inference on fpga. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 29–39.

[76] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. 2015. Optimizing FPGA-based accelerator design for deep
convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays. 161–170.

[77] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong,
Wen-mei Hwu, and Deming Chen. 2018. DNNBuilder: An automated
tool for building high-performance DNN hardware accelerators for

FPGAs. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). ACM, 1–8.

[78] Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua Lin, Jinjun
Xiong, Wen-mei Hwu, and Deming Chen. 2020. DNNExplorer: a frame-
work for modeling and exploring a novel paradigm of FPGA-based
DNN accelerator. In Proceedings of the 39th International Conference
on Computer-Aided Design. 1–9.

[79] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and
Bingsheng He. 2017. COMBA: A comprehensive model-based anal-
ysis framework for high level synthesis of real applications. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 430–437.

[80] Ruizhe Zhao, Jianyi Cheng, Wayne Luk, and George A Constantinides.
2022. POLSCA: Polyhedral High-Level Synthesis with Compiler Trans-
formations. In 32nd International Conference on Field Programmable
Logic and Applications (FPL’22).

[81] Tian Zhao, Alexander Rucker, and Kunle Olukotun. 2023. Sigma: Com-
piling Einstein Summations to Locality-Aware Dataflow. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 718–732.

[82] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
2018. Deepthings: Distributed adaptive deep learning inference on
resource-constrained iot edge clusters. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2348–
2359.

[83] Guanwen Zhong, Alok Prakash, Yun Liang, Tulika Mitra, and Smail
Niar. 2016. Lin-analyzer: A high-level performance analysis tool for
FPGA-based accelerators. In Proceedings of the 53rd Annual Design
Automation Conference. 1–6.

[84] Peipei Zhou, Jiayi Sheng, Cody Hao Yu, Peng Wei, Jie Wang, Di Wu,
and Jason Cong. 2021. Mocha: Multinode cost optimization in heteroge-
neous clouds with accelerators. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 273–279.

[85] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du,
Jack Lo, Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong
Hu, et al. 2023. CHARM: Composing Heterogeneous AcceleRators
for Matrix Multiply on Versal ACAP Architecture. arXiv preprint
arXiv:2301.02359 (2023).

[86] Wei Zuo, Warren Kemmerer, Jong Bin Lim, Louis-Noël Pouchet, An-
drey Ayupov, Taemin Kim, Kyungtae Han, and Deming Chen. 2015.
A polyhedral-based systemc modeling and generation framework for
effective low-power design space exploration. In 2015 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD). IEEE, 357–
364.

[87] Wei Zuo, Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Chung-
Wei Lin, Shinichi Shiraishi, and Deming Chen. 2017. Accurate high-
level modeling and automated hardware/software co-design for effec-
tive SoC design space exploration. In Proceedings of the 54th Annual
Design Automation Conference 2017. 1–6.

17

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 MLIR Framework
	3.2 Relevant MLIR Dialects

	4 HIDA Overview
	5 HIDA-IR
	5.1 Functional Dataflow
	5.2 Structural Dataflow
	5.3 Integration with MLIR Dialects

	6 HIDA-OPT
	6.1 Functional Dataflow Construction
	6.2 Functional Dataflow Optimization
	6.3 Structural Dataflow Construction
	6.4 Structural Dataflow Optimization
	6.5 Structural Dataflow Parallelization

	7 Evaluation
	7.1 C++ Kernels Evaluation
	7.2 PyTorch Models Evaluation
	7.3 Ablation Study on ResNet-18

	8 Related Works
	8.1 MLIR Infrastructure
	8.2 HLS Languages
	8.3 HLS Compilers
	8.4 DNN Compilers

	9 Conclusion
	Acknowledgments
	References

