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Abstract—The widespread adoption of Large Language Models
(LLMs) is impeded by their demanding compute and memory
resources. The first task of this paper is to explore optimization
strategies to expedite LLMs, including quantization, pruning,
and operation-level optimizations. One unique direction is to
optimize LLM inference through novel software/hardware co-
design methods. Given the accelerated LLMs, the second task of
this paper is to study LLMs’ performance in the usage scenario of
circuit design and verification. Specifically, we place a particular
emphasis on functional verification. Through automated prompt
engineering, we harness the capabilities of the established LLM,
GPT-4, to generate High-Level Synthesis (HLS) designs with
predefined errors based on 11 open-source synthesizable HLS
benchmark suites. This dataset is a comprehensive collection of
over 1000 function-level designs, and each of which is afflicted
with up to 45 distinct combinations of defects injected into the
source code. This dataset, named Chrysalis, expands upon what’s
available in current HLS error models, offering a rich resource
for training to improve how LLMs debug code. The dataset can be
accessed at: https://github.com/UIUC-ChenLab/Chrysalis-HLS.

Index Terms—Large Language Models, software/hardware co-
design, functional verification

I. INTRODUCTION

The rapid evolution of machine learning, particularly through
the advancements in neural network architectures, has precip-
itated significant breakthroughs in diverse fields, encompass-
ing computer vision [1] and natural language processing [2].
Among various neural network designs, the transformer ar-
chitecture [3] stands out, offering unparalleled performance
on sequence-to-sequence tasks. Instead of using traditional
recurrent layers, this innovative structure harness the power
of the attention mechanism. The transformer model serves as
the foundation for the emergence of Large Language Models
(LLMs) such as OpenAI’s GPT series [4], Meta’s LLaMA [5],
and Google’s BARD [6]. Encompassing billions of parameters
and informed by extensive textual datasets sourced from the
internet, these models possess the capability to interpret human-
generated text and yield contextually pertinent and logically
coherent outputs to a wide spectrum of prompts.

In the domain of Electronic Design Automation (EDA), the
potential application of LLMs is becoming increasingly evident.
They are poised to support hardware engineers in various
hardware design stages, ranging from the initial conception and
verification to optimization and coordination of the complete
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design flow. Chip-Chat [7] established a set of eight founda-
tional benchmarks, aiming to delineate both the capabilities
and limitations of current state-of-the-art (SOTA) LLMs in
hardware design. Concurrently, there is a trend in the academic
circles towards the development of robust benchmark frame-
works to rigorously gauge LLM performance. For instance, [8]
introduced an open-source suite comprising 30 intricate hard-
ware designs. Their contribution enhanced LLMs’ feedbacks
quality through advanced prompt engineering techniques. In a
related effort, Shailja et al. [9] fine-tuned the CodeGen model
[10] using 17 Verilog codes. Additional research has focused
on dataset construction through practical RTL tutorial exercises.
For instance, VerilogEval [11] developed a comprehensive
benchmark framework that includes 156 problems derived from
the educational HDLBits platform. Moreover, this framework
was employed to fine-tune the CodeGen model [10], signifi-
cantly improving its proficiency in generating RTL codes. In
a distinct approach, ChatEDA [12] was architected to generate
codes specifically for conjuring codes capable of navigating
EDA tools based on natural language cues.

While LLMs benefit from a vast number of parameters, they
also grapple with challenges related to sparsity and compu-
tational overhead. Because of the extensive usage of LLMs in
time-sensitive applications like Internet of things (IoT) devices,
it is essential to ensure that LLMs deliver optimal inference
performance without compromising on the multi-task solving
and language generation ability. In this paper, we explore sev-
eral cutting-edge optimization techniques for LLM inference,
with a focus on quantization and pruning. Numerous studies
have highlighted the potential advantages of these methods
individually, including activation outliers handling, structural
and contextual sparsity reduction. It is still challenging to
achieve consistent optimization benefits across diverse LLMs
and ensure adaptability in real-world scenarios. Thus, we point
out the potential solution in software/hardware co-design for
this challenge, inspired by its proved power and effectiveness
in the areas of Deep Neural Networks (DNNs) [13]–[16], Graph
Neural Networks (GNNs) [17], and conventional machine-
learning solutions [18].

Overall, this paper introduces a unified optimization frame-
work for LLMs, with a particular emphasis on functional
verification in EDA with the following contributions:

• We study the integration of both LLM quantization and
pruning techniques, yielding greater benefits than their



standalone applications while compensating for their re-
spective limitations. Additionally, we anticipate the po-
tential integration of this approach with domain-specific
hardware accelerators.

• We pioneer an innovative methodology that harnesses the
capabilities of GPT-4 to inject bugs into HLS codes.
We design a set of tailored prompts to guide GPT-4 in
generating consistent and compliant buggy codes within
the EDA domain.

• Leveraging the above methodologies, we create the
Chrysalis dataset that includes both correct source codes
and intentionally injected buggy codes. This dataset is
meticulously organized, comprising over 1000 function-
level designs sourced from 11 open-source synthesizable
HLS benchmark suites. Each design undergoes a con-
trolled injection of up to 45 distinct combinations of bugs.
It represents an indispensable tool for the assessment and
refinement of LLM-based HLS domain-specific debugging
assistants.

II. LLM ACCELERATION

A. Challenges

The immense scale of LLMs, often encompassing billions
or trillions of parameters, necessitates significant compute and
memory resources for both training and inference. This not only
amplifies energy consumption but also poses a major obstacle
for time-sensitive or real-time applications using LLMs. From
our benchmark analysis of the time consumption of Vicuna-
7B in Fig. 1 and 2, LLMs suffer from different aspects during
training and inference. In this section, we will focus on opti-
mizing LLMs’ inference that could provide an intuition to more
efficiently leverage the power of existing LLMs such as GPT-4
and LLaMA2. For inference, as shown in Fig. 2, the Multi-layer
Perceptron (MLP) predominantly dictate the latency, regardless
of input length. Additionally, the latency attributed to attention
layers grows more pronounced as input lengths increase. In
this section, we aim to illustrate that although existing methods
have considerably optimized these two parts, there remains a
need for more advanced software/hardware co-design methods
to fully leverage the capabilities of hardware platforms.

B. Existing Methods

Pruning and quantization are key techniques in optimizing
neural networks, particularly in addressing the computational
challenges presented by LLMs. These methods aim to reduce
the size of models and the computational demands during
inference without significantly compromising performance.

1) Quantization of LLMs: Besides the benefit from mem-
ory and inference latency reduction, quantization’s potential
for greater parallelism taps into the capabilities of hard-
ware accelerators like FPGAs, further amplifying throughput.
LLM.int8 [19] develops a two-part quantization procedure
with vector-wise quantization and a new mixed-precision de-
composition scheme. It could preserve perplexity for models
with 125M to 13B parameters at the cost of longer inference
latency. SmoothQuant [20] uses a per-channel smoothing factor

Fig. 1. Time consumption breakdown: a Llama-2-7b [5] decoder layer during
training. Attention significantly dominates the latency when sequence length
becomes longer.

Fig. 2. Time consumption breakdown: a decoder layer of Llama-2-7b during
inference. The MLPs consistently take up the most time across all input
lengths. The attention mechanism and normalization operations scale with input
length. Their computational times increase notably as the input becomes longer,
highlighting their sensitivity to input size.

to handle outliers in activations and achieves lower latency
compared to FP16. The results demonstrate that SmoothQuant
can match the FP16 accuracy with INT8 quantization across
various LLM sizes up to 530B parameters.

2) Pruning of LLMs: A pruned model not only reduces
memory requirements but also accelerates inference. LLM-
Pruner [21] uses structural pruning by dividing weights into in-
dependent groups and employs the low-rank approximation for
recovery. At the same time, it preserves the diverse capacities of
LLMs. SparseGPT [22] solves the Row-Hessian challenge, the
computational difficulty of calculating and storing individual
rows of the Hessian matrix, by reusing Hessians between
rows and distinct pruning masks with negligible accuracy drop.
However, SparseGPT only demonstrated its fine-tuning-free
inference speed on a narrow range of large models like OPT
175B and BLOOM 176B. Deja Vu [23] reveals the existence of



Fig. 3. OPT-13b’s accuracy on Lambada Dataset with different quantization
methods. W8A8-Naive denotes the naive 8-bits weights and activation quantiza-
tion of LLM.int8. W4A4-SQ denotes 4-bits weights and activation quantization
of SmoothQuant.

contextual sparsity and proposes a real-time sparsity predictor
trained during inference, which can reduce the inference latency
of OPT-175B. The evaluations on OPT-66B and 175B show no
compromising quality of the models.

C. Software/Hardware Co-design

1) Motivations: Beyond the evident advantages of pruning
and quantization in LLMs, the complexities of their effective
implementation remain. The core challenge with quantization
lies in preserving the model’s accuracy. A reduction in precision
can compromise accuracy. Likewise, excessive pruning can sig-
nificantly diminish model accuracy. Additionally, the irregular
sparsity introduced by pruning may not align well with specific
hardware architectures, potentially resulting in less-than-ideal
performance enhancements. SmoothQuant provides the turn-
key solution. However, achieving consistent performance in
LLMs with 4-bit quantization remains challenging as shown
in Fig. 3, despite claims of its universal optimality proved
by other previous work [24]. We tested the performance of
SmoothQuant on OPT-13B [25]. Fig. 3 illustrates the accuracy
levels SmoothQuant can attain in comparison to FP16, but
W4A4 (4-bits quantization on weights and activation) and
W4A16 cannot achieve the comparable accuracy with the
original model before quantization. After testing with different
values of scale hyperparameter α, the accuracy of these two
models could vary between 0 to 0.3. These two models are
sensitive to the hyperparameter and need further investigation.

At the same time, the existing pruning methods mostly test
on models with parameters over 175B. These large models
are always under speculation of under-training, resulting in a
high percentage of inactive parameters in the first place. Deja
Vu only demonstrates the preservation of accuracy on these
large models, showing insufficient evidence on its effectiveness
regarding smaller models. Based on our experimental results,
after pruning out 50% parameters on attention layers and 30%
on MLP layers, OPT-13B model’s accuracy drops approxi-
mately 15% on WinoGrande dataset. Meanwhile, the existing

Fig. 4. The activeness of heads profiling on different datasets. Here, we
measure the contribution of different heads based on their variance over
input sequence. Inactive heads show low variance, which eventually leads to
contextual sparsity.

pruning methods working with smaller LLMs overlooks their
generalization abilities over data in different domains. For
example, LLM-Pruner runs the risk of overfitting in recovery
stage after pruning.

2) Our Ideas: From experiments involving state-of-the-art
LLMs, solely relying on either quantization or pruning proves
challenging in meeting real-world requirements and adapting
to diverse LLMs and hardware platforms. This indicates the
potential benefits of integrating these two prevalent techniques
while considering hardware characteristics. Thus, we suggest
exploring pruning-aware quantization for LLM optimization.
As indicated in [23] and our experiments on OPT-13B, inac-
tive attention heads are uniformly distributed across the input
sequence, referred to as the contextual sparsity of LLMs. A
typical strategy to capitalize on this sparsity is pruning. How-
ever, different LLMs often exhibit varied patterns of contextual
sparsity, constraining the effectiveness of conventional pruning.
At the same time, quantization is sensitive to the range and
distribution of parameters, making the standalone quantization
precision a non-ideal solution.

Based on these considerations, our pruning-aware quanti-
zation method aims to tackle these challenges by choosing
pruning or quantization precisions according to the behavior
of different LLMs over various datasets. Specifically, pruning-
aware quantization method will profile over relatively small
amount of dataset and identify the importance and scale of
parameters in attention matrix and neurons. Subsequently,
guided by the profiling results, our approach can select between
pruning (0 bit) or varying quantization precisions (4, 8, and
16 bits) for each layer. Additionally, these choices are tailored
to align with the efficient computation patterns of different
hardware architectures, achieving the co-optimization of both
software and hardware. Our approach can reduce the memory
and computational cost while achieving enhanced inference
accuracy than existing pruning methods. Additionally, as shown
in Fig. 4, the activeness of attention heads exhibits similar dis-
tribution over multiple datasets, which suggests the preservation



Fig. 5. The preliminary result from forward throughput improvement.
Flash2 hmask is the result from the combination of FlashAttention2 and our
pruning-aware quantization approach.

of multi-task solving and language generation ability of our ap-
proach. Furthermore, our approach can also be combined with
the state-of-art hardware-aware LLM acceleration frameworks,
such as FlashAttention-2 [26]. Based on the preliminary results
illustrated in Fig. 5, we are able to achieve higher throughput
than both PyTorch and standalone FlashAttention-2.

III. LLM FOR DESIGN VERIFICATION

A. Challenges

Circuit design involves stages such as RTL synthesis, logic
synthesis, and placement and routing [27]. Most of these stages
are equipped with their corresponding verification processes to
ensure the implemented hardware matches its specifications.
Verification methods fall into two main categories: formal ver-
ification and simulation-based verification [28]. While formal
verification provides mathematical assurance, its limitations,
like scalability issues and the necessity for niche coding skills,
often position simulation-based verification as the industry’s
preferred method.

Nonetheless, simulation-based verification has its shortcom-
ings as it is very time-consuming especially for large-scale
hardware designs. Verification can account for 45% to 55% of
the total design cycle [29], making it the most extensive phase
in hardware development. Moore’s Law [30] suggests that tran-
sistor counts in integrated circuits (ICs) double approximately
every two years. For reference, the transistors of the AMD
Ryzen 9 series processor [31] [32] scaled up by 1.78 times
from 2019 to 2021. Yet, as depicted in Fig. 6 [33], manual
hardware design productivity (quantified in Gates/Day) has not
paralleled these technological leaps. This divergence reveals
an expanding productivity gap, intensified by growing system
intricacies and nearing physical property limitations.

Traditional hardware simulation-based functional verification
uses test vectors, as shown in Fig. 7, to ensure a system’s ex-
pected behavior. Engineers often manually design test vectors,
create test benches, and set legality constraints. After reviewing
coverage reports, they adjust parameters and continue to the

Fig. 6. The great productivity gap between hardware design(purple line)
productivity, verification(red line) productivity and technology capacity(green
line) [33].

Fig. 7. Comparison of LLM-Based vs. Traditional HLS Functional Verification
Flows.

next test iteration. The process of crafting these test vectors,
though reliable to a certain extent, has always been labor-
intensive, requiring significant domain expertise. Moreover, the
growing complexity of modern hardware makes exhaustive
state examination computationally unviable due to the vast
search space. Recognizing these limitations, our approach har-
nesses the power of LLMs to detect common bug patterns that
humans easily get stuck, automatically on the top of the source
code.

In light of the aforementioned challenges of the widening
productivity gap and the increasing complexity of hardware ver-
ification, HLS enhances the design verification landscape. HLS,
operating at an elevated abstraction level, facilitates streamlined
bug identification in intricate designs by emphasizing algo-
rithmic and architectural considerations, harmonizing with the
LLM’s strength in context comprehension. Furthermore, HLS
abbreviates the design-to-verification trajectory, fostering swift
issue recognition and expediting debugging. Collectively, HLS
furnishes engineers with an optimized, intuitive, and holistic
verification platform.

B. LLM-based Chrysalis Dataset Generation

Within our functional verification framework, we employ the
power of LLMs to streamline the debugging process, commenc-
ing with the precise localization of erroneous code lines. A
foundational requirement for this approach is the establishment
of an LLM-centric dataset which is crafted specifically to



facilitate a robust evaluation or finetuning of varying LLMs
in the domain of HLS code debugging tasks. By deliberately
introducing known bugs and monitoring an LLM’s prowess in
pinpointing them, we are empowered to assess its efficiency,
accuracy, and reliability comprehensively. This assessment does
not just offer a window into the diagnostic capabilities of the
LLM; it is also useful in refining a domain-specific LLM.

Historically, the research community has grappled with the
absence of an open-source dataset catering specifically to buggy
HLS code. To address this gap, we have created the Chrysalis
dataset, a comprehensive benchmark tailored to catalyze syner-
gistic advancements between the LLM and HLS domains. The
dataset is named ”Chrysalis” to metaphorically represent the
evolution of buggy code, akin to the transformative chrysalis
stage in a butterfly’s life cycle, culminating in the emergence
of refined code. This dataset is exclusively crafted to underpin
LLM-guided HLS debugging endeavors targeting FPGA plat-
forms.

To closely mirror genuine, real-world coding errors often
overlooked by engineers, we have enumerated a series of logical
bugs. These particular bugs are crafted to elude detection by
conventional HLS synthesizing and compiling tools. We utilize
GPT-4’s [34] nuanced natural language capabilities, combined
with HLS source code and curated prompts, to enhance our
dataset creation. Our dataset is a comprehensive collection,
offering both flawless benchmark suites and those with injected
bugs. It features detailed classifications of errors and includes
precise annotations. These annotations trace the exact origins of
the faults within the code. Our objective is to embed one or two
specific bug types in each benchmark, targeting up to 45 unique
scenarios: 9 with a single bug type and 36 with two bug types. If
certain bug types are infeasible to be injected for one particular
benchmark, the total number of buggy code instances may be
fewer than 45. To augment the variety of errors, variables can
be systematically varied to spawn a multitude of faulty code
samples.

The steps of generating the Chrysalis dataset include HLS
design collection, logic bugs simulation and injection, and bug
injection validation. The following sub-sections elucidate the
detailed implementation strategies underpinning our Chrysalis
dataset creation.

1) HLS Design Collection: For the creation of our Chrysalis
dataset, we have meticulously curated a collection of real-
world HLS applications based on open-source projects. This
comprehensive benchmark suites encompass a diverse array of
synthesizable HLS applications, each drawn from the follow-
ing reputable sources: FINN [35], GNNBuilder [36], H.264
[37], HLS4ML [38], MachSuite [39], Open-Source-IPs [40],
Polybench [41], Rosetta [42], Vitis HLS introductory examples
[43], Vitis libraries [44], and Tacle-Bench [45]. Our Chrysalis
dataset primarily focuses on function-level tasks, with over
1,000 individual HLS programs extracted from these reputable
sources. This selection ensures the representation of various
coding styles and complexities.

While constructing the Chrysalis dataset, we consider the
intricacies of handling functions that include header files or

making calls to other functions. We recognize that engineers
may occasionally overlook critical values or functions, poten-
tially resulting in inter-functional errors. In order to facili-
tate a comprehensive understanding of the contexts in which
errors can be injected, we have incorporated all instances
of the #define syntax, ensuring that the entirety of each
function’s macro definitions is accounted for. Additionally,
in each function-level design, we have incorporated details
of all the functions that a particular function calls, ensuring
comprehensive and clear documentation. This holistic approach
ensures that LLM is well-equipped to comprehend the full
scope of interdependencies and contextual intricacies, thereby
enhancing its effectiveness in error injection tasks.

By adhering to this rigorous procedure, our methodology in
developing the Chrysalis dataset serves a dual purpose. Firstly,
it exemplifies a systematic and automated method for LLM-
targeted dataset generation. Secondly, it serves as a valuable
resource for advancing the capabilities of the LLMs’ capacity
in the realm of HLS verification.

2) Logic Bugs Simulation: After thoroughly analyzing the
source code and extracting all functions, our next step is to
simulate pre-silicon logic bugs. These are the kind of errors
hardware designers might inadvertently introduce when crafting
the HLS version of a design, leading to deviations from the
intended specifications. The error types employed in our work
align closely with the categorization introduced in [46], and we
categorize the potential error types as follows: (1) OOB: Out-
of-bounds array access; (2) INIT: Accessing an uninitialized
variable; (3) SHFT: Bit shift by an out-of-bounds amount; (4)
INF: An infinite loop arising from an incorrect loop termination
condition; (5) *++: Misunderstanding of operator precedence,
erroneously assuming that dereference (*) has higher prece-
dence than postincrement (++); (6) MLU: Errors in manual
loop unrolling, leading to the omission of one iteration; (7)
BUF: Copying from the wrong half of a split buffer; (8) ZERO:
A variable initialized to zero when it should have a nonzero
initializer; (9) USE: Unintended sign extension.

To emulate real-world buggy scenarios, each function-level
design has one or two of these errors injected. Through this
process, we create a dataset comprising over 1,000 function-
level designs, each including 1-2 buggy instances out of 45
possible combinations. This comprehensive dataset will provide
a robust platform to evaluate the performance and accuracy of
LLM-based debugging tools.

3) LLM-Driven Bug Injection Methodology for HLS Code:
Capitalizing on the accurate code version combined with a
defined error type, we harness the capabilities of GPT-4 for
a precise and systematic introduction of errors into HLS
design structures. The foundation of our methodology rests
on a refined prompt template, fashioned to facilitate GPT-4 in
generating erroneous code with both stability and predictability.
The template is strategically partitioned into three key sections:

• Context: This section offers a snapshot of the surrounding
environment where the HLS code is set to operate. It
emphasizes the essence of studying inadvertent human-
induced errors that mirror real-world scenarios.



Fig. 8. An illustration showcasing the procedure for directing GPT-4 to introduce an Out-Of-Bounds (OOB) error into the ’gemm 4096’ source function. The
code line emphasized with a blue underline indicates the injection point of the error. For an automated generation of multiple erroneous function codes, the
terms highlighted in yellow must be substituted with the appropriate code identifiers and contents. To introduce varying error types, the descriptors highlighted
in grey should be adjusted accordingly.

• Requirement: This delineates the characteristics of the
intended error or bug, offering a comprehensive insight
into its nature. Beyond just a mere directive for error
generation, it elucidates the rationale behind the need
for such errors, providing a deeper understanding of the
specific anomalies being introduced.

• Complementary Rules: Serving as a structured frame-
work, these rules ensure the synthesized bugs are not
only consistent with the original intention but also don’t
stray from the designated error category. To streamline
the process, outputs are structured in a JSON file format,
encompassing fields like error type, and the content of
the faulty code line, among others, for automated parsing.
Moreover, to eschew exhaustive and aimless fault injec-
tion, the system is programmed to directly output ’No’
if the conditions are unsuitable for the stipulated error
manifestation.

In each function-level task within our Chrysalis dataset,
we introduce one to two types of errors. This strategy is
specifically devised to emulate the nuances of human oversight
or negligence, ensuring the results resonate with real-world
scenarios.

Fig. 8 showcases an example of the process of injecting an
OOB error into the function ”gemm 4096”. Upon introducing
a bug into the system, we conduct a validation process to ascer-
tain if the bug is correctly injected following the prompt. This

will involve a comparative analysis between the original, error-
free source code and the generated buggy code. To maintain
the integrity of our findings, any redundant or recurring errors
will be systematically eliminated.

C. LLM-Based Bug Detection

Our Chrysalis dataset presents a promising platform for
evaluating the proficiency of existing LLMs in HLS bug
localization. To be specific, engineers can assess the models’
precision and efficiency by comparing the errors detected by the
LLMs to predefined error labels. These labels provide detailed
information, including the types of errors and the specific
locations of the incorrect code lines.

We plan to develop a lightweight, domain-specific LLM
trained on the Chrysalis dataset. Such a model would not
merely detect anomalies but might also possess the capability
to rectify them. This domain-centric LLM could integrate as
an extension within development environments like VSCode.
This would parallel tools such as Copilot, offering hardware
engineers intuitive suggestions to identify and rectify pitfalls
in their HLS codes, thus augmenting the debugging process.

IV. CONCLUSION

In this paper, we studied on the acceleration strategies of
LLMs through software/hardware co-design and LLMs applica-
tion in the domain of design verification, particularly focusing
on functional verification in HLS. We have explored several



state-of-the-art techniques for expediting LLMs, such as quan-
tization and pruning, and proposed an approach that synergizes
these methods to overcome their individual limitations. Our pre-
liminary results suggest that this integrated approach can yield
considerable improvements in inference performance without
compromising accuracy, indicating a promising direction for
future research.

Furthermore, we have addressed the critical challenge of
functional verification in hardware design, which has become
increasingly complex and time-consuming. By leveraging the
capabilities of LLMs, specifically GPT-4, we have created a
comprehensive Chrysalis dataset for HLS that includes over
1000 function-level designs with up to 45 distinct combinations
of defects. This Chrysalis dataset serves as a valuable resource
for evaluating and fine-tuning LLM-based HLS domain-specific
debugging assistants.

In conclusion, our research contributes a methodological
foundation and a practical toolkit for harnessing the power of
LLMs in the design verification domain. As we continue to
refine these techniques and expand the capabilities of LLMs,
we anticipate a future where the co-design of software and
hardware is seamlessly interwoven into the fabric of hard-
ware development, leading to faster, more efficient, and error-
resilient design cycles.

ACKNOWLEDGEMENTS

This work is supported in part by IBM-Illinois Discovery
Accelerator Institute (IIDAI), NSF 2117997 grant through
the A3D3 institute, and Semiconductor Research Corporation
(SRC) 2023-CT-3175 grant.

REFERENCES

[1] Y. Li et al., “Csrnet: Dilated convolutional neural networks for under-
standing the highly congested scenes,” in Proc. of CVPR, 2018.

[2] Y. Goldberg, “A primer on neural network models for natural language
processing,” Journal of Artificial Intelligence Research, 2016.

[3] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, 2017.

[4] L. Ouyang et al., “Training language models to follow instructions with
human feedback,” Advances in Neural Information Processing Systems,
2022.

[5] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

[6] S. Pichai, “An important next step on our AI journey,” 2023.
[7] J. Blocklove et al., “Chip-Chat: Challenges and Opportunities in Conver-

sational Hardware Design,” arXiv preprint arXiv:2305.13243, 2023.
[8] Y. Lu et al., “RTLLM: An Open-Source Benchmark for Design RTL Gen-

eration with Large Language Model,” arXiv preprint arXiv:2308.05345,
2023.

[9] S. Thakur et al., “Benchmarking Large Language Models for Automated
Verilog RTL Code Generation,” in Proc. of DATE, 2023.

[10] E. Nijkamp et al., “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[11] M. Liu et al., “VerilogEval: Evaluating Large Language Models for
Verilog Code Generation,” arXiv preprint arXiv:2309.07544, 2023.

[12] Z. He et al., “ChatEDA: A Large Language Model Powered Autonomous
Agent for EDA,” arXiv preprint arXiv:2308.10204, 2023.

[13] X. Zhang et al., “DNNBuilder: an Automated Tool for Building High-
Performance DNN Hardware Accelerators for FPGAs,” in Proc. of
ICCAD, 2018.

[14] H. Ye et al., “HybridDNN: A Framework for High-Performance Hybrid
DNN Accelerator Design and Implementation,” in Proc. of DAC, 2020.

[15] X. Zhang et al., “DNNExplorer: a framework for modeling and exploring
a novel paradigm of FPGA-based DNN accelerator,” in Proc. of ICCAD,
2020.

[16] C. Zhuge et al., “Face recognition with hybrid efficient convolution
algorithms on FPGAs,” in Proc. of GLVLSI, 2018.

[17] X. Chen et al., “Thundergp: Hls-based graph processing framework on
fpgas,” in Proc. of FPGA, 2021.

[18] S. Liu et al., “Real-time object tracking system on FPGAs,” in Proc. of
SAAHPC, 2011.

[19] T. Dettmers et al., “Llm. int8 (): 8-bit matrix multiplication for trans-
formers at scale,” arXiv preprint arXiv:2208.07339, 2022.

[20] G. Xiao et al., “Smoothquant: Accurate and efficient post-training quan-
tization for large language models,” in Proc. of ICML, 2023.

[21] E. Frantar et al., “SparseGPT: Massive Language Models Can Be
Accurately Pruned in One-Shot,” 2023.

[22] X. Ma et al., “LLM-Pruner: On the Structural Pruning of Large Language
Models,” arXiv preprint arXiv:2305.11627, 2023.

[23] Z. Liu et al., “Deja Vu: Contextual Sparsity for Efficient LLMs at
Inference Time,” in Proc. of ICML, 2023.

[24] T. Dettmers et al., “The case for 4-bit precision: k-bit inference scaling
laws,” in Proc. of ICML, 2023.

[25] S. Zhang et al., “OPT: Open Pre-trained Transformer Language Models,”
2022.

[26] T. Dao, “Flashattention-2: Faster attention with better parallelism and
work partitioning,” arXiv preprint arXiv:2307.08691, 2023.

[27] L. Lavagno et al., EDA for IC implementation, circuit design, and process
technology. CRC press, 2018.

[28] A. Piziali, Functional verification coverage measurement and analysis.
Springer Science & Business Media, 2007.

[29] H. Foster, “Part 8: The 2020 wilson research group functional verification
study,” https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/
part-8-the-2020-wilson-research-group-functional-verification-study/,
2021.

[30] R. R. Schaller, “Moore’s law: past, present and future,” IEEE spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[31] P. Alcorn, “AMD Ryzen 9 3900X and Ryzen 7 3700X Review,”
https://www.tomshardware.com/reviews/ryzen-9-3900x-7-3700x-review,
6214.html, 2019.

[32] TechPowerUp, “AMD Ryzen 7 5800H Specifications,” https://www.
techpowerup.com/cpu-specs/ryzen-7-5800h.c2368, 2021.

[33] R. Bahar et al., “Workshops on Extreme Scale Design Automation
(ESDA) challenges and opportunities for 2025 and beyond,” arXiv
preprint arXiv:2005.01588, 2020.

[34] OpenAI, “GPT-4 Technical Report,” 2023. [Online]. Available: https:
//doi.org/10.48550/arXiv.2303.08774

[35] Y. Umuroglu et al., “Finn: A framework for fast, scalable binarized neural
network inference,” in Proc. of FPGA, 2017.

[36] S. Abi-Karam et al., “GNNBuilder: An Automated Framework for
Generic Graph Neural Network Accelerator Generation, Simulation, and
Optimization,” arXiv preprint arXiv:2303.16459, 2023.

[37] X. Liu et al., “High level synthesis of complex applications: An H. 264
video decoder,” in Proc. of FPGA, 2016.

[38] F. Fahim et al., “hls4ml: An open-source codesign workflow to em-
power scientific low-power machine learning devices,” arXiv preprint
arXiv:2103.05579, 2021.

[39] B. Reagen et al., “MachSuite: Benchmarks for accelerator design and
customized architectures,” in Proc. of IISWC, 2014.

[40] X. Liu et al., “HLS based Open-Source IPs for Deep Neural Network
Acceleration,” https://github.com/DNN-Accelerators/Open-Source-IPs,
2019.

[41] J. Karimov et al., “Polybench: The first benchmark for polystores,”
in Performance Evaluation and Benchmarking for the Era of Artificial
Intelligence: 10th TPC Technology Conference, TPCTC 2018, Rio de
Janeiro, Brazil, August 27–31, 2018, Revised Selected Papers 10, 2019.

[42] Y. Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite
for software programmable fpgas,” in Proc. of FPGA, 2018.

[43] Xilinx, “Vitis-HLS-Introductory-Examples,” https://github.com/Xilinx/
Vitis-HLS-Introductory-Examples, 2023.

[44] Xilinx, “Vitis libraries,” https://github.com/Xilinx/Vitis Libraries, 2019.
[45] Tacle, “Tacle Bench,” https://github.com/tacle/tacle-bench, 2017.
[46] K. A. Campbell, “Robust and reliable hardware accelerator design through

high-level synthesis,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2017.


